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Abstract

With the current explosion of data, retrieving and integrating information from various sources is a
critical problem. This report describes work performed at USC/ISI, aimed at developing a general and
extensible approach to this problem, with attention paid also to cases where knowledge of the ultimate
sources 1s Incomplete or inaccurate. The SIMS approach exploits a semantic model of a problem domain
to integrate the information from various sources — databases and knowledge bases. The domain and the
information sources are modeled. Queries submitted to SIMS are mapped into a set of queries to individual
information sources. The set of queries is then further optimized, using knowledge about the domain and
the information sources. The data obtained is then returned to the user. SIMS utilizes techniques from the
areas of knowledge representation, planning, learning, and data mining.

Work on the SIMS system was funded also by an earlier DARPA contract. After providing only a brief
review of the basic SIMS system, this report will concentrate on new developments funded exclusively by
this contract. Further background can be found in earlier publications, listed in the references.

This report is structured as follows. Chapter 1 provides a brief overview of SIMS. The following three
chapters provide descriptions of the major revisions and improvements to SIMS planning done during the
period of this contract. Chapter 2 describes modifications to SIMS’ planner that made it particularly suitable
for the domain of information gathering. Chapter 3 describes how planning efficiency was improved by pre-
processing source descriptions. Chapter 4 describes Planning By Rewriting (PBR), a new approach to
planning developed late in the course of the project. The final two chapters address issues that arise due to
the incompleteness of the system’s knowledge of sources, or variations in the makeup of the system that we
have no control over. Chapter 5 describes our approach to replanning when sources that the system believes
to be available are unexpectedly inaccessible, and Chapter 6 describes our use of data mining techniques to
help come up with models and other information the system needs, by inspecting databases directly. We

conclude with an appendix, a tutorial describing how to set up a SIMS system to access new information
sources.

Authorship of this report: This report contains contributions by the following members of the SIMS
group at ISI: Yigal Arens, Jose-Luis Ambite, Craig A. Knoblock, Ion Muslea, Andrew Philpot and Wei-Min
Shen. The work of Ion Muslea, a graduate student, was supported in part also by USC’s Integrated Media
Systems Center (IMSC) — an NSF Engineering Research Center, and by the National Science Foundation
under grant number IRI-9313993.




Chapter 1

Brief Summary of SIMS

1 Introduction

Most tasks performed by users of complex information systems involve interaction with multiple information
sources.! The SIMS approach to this integration problem has been based largely on research in Artificial
Intelligence; primarily in the areas of knowledge representation, planning, and machine learning. A model of
the application domain is created, using a knowledge representation system to establish a fixed vocabulary
for describing objects in the domain, their attributes and relationships among them. Using this vocabulary,
a description is created for each information source. Each description indicates the data-model used by the
source, the query language, network location, size estimates, etc., and describes the contents of its fields in
relation to the domain model. SIMS’ descriptions of different information sources are independent of each
other, greatly easing the process of extending the system. Some of the modeling is aided by source analysis
software developed as part of the SIMS effort.

Queries to SIMS are written in a high-level language (Loom or a subset of SQL) using the terminology
of the domain model — independent of the specifics of the information sources. Queries need not contain
information indicating which sources are relevant to their execution or where they are located. Queries do
not need to state how information present in different sources should be joined or otherwise combined or
manipulated.

SIMS uses a planner to determine how to identify and combine the data necessary to process a query.
In a pre-processing stage, all data sources possibly relevant to the query are identified. The planner then
selects a set of sources that contain the queried information and generates an initial plan for the query.
This plan is repeatedly refined and optimized until it meets given performance criteria. The plan itself
includes, naturally, sub-queries to appropriate information sources, specification of locations for processing
intermediate data, and parallel branches when appropriate. The SIMS system then executes the plan. The
plan’s execution is monitored and replanning is initiated if its performance meets with difficulties such as
unexpectedly unavailable sources. It is also possible for the plan to include explicit replanning steps, after
reaching a state where more is known about the circumstances of plan execution.

Changes to information sources are handled by changing source descriptions only. The changes will
automatically be considered by the SIMS planner in producing future plans that utilize information from
the modified sources. This greatly facilitates extensibility.

1.1 Architecture

A visual representation of the components of SIMS is provided in Figure 1.1.
SIMS addresses the problems that arise when one tries to provide a user familiar only with the general
domain with access to a system composed of numerous separate data- and knowledge-bases.

1By the term information source we refer to any system from which information can be obtained. See Section 1.2 for a
listing.
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Figure 1.1: SIMS Overview Diagram.

Specifically, SIMS does the following:

® Modeling: It provides a consistent way of describing information sources to the systemn, so that data
in them is accessible to it.

¢ Information Source Selection: Given a query, it

— Determines which classes of information will be relevant to answering the query.

— Quickly, using some information generated during an earlier preprocessing stage, generates a list
of all combinations of sources that contain all information required for a query.

¢ Initial Query-Plan Formation: It creates an initial plan, a sequence of subqueries and other forms
of data-manipulation that when executed will yield the desired information. This initial plan does not
necessarily satisfy any optimization requirements.

¢ Query-Plan Rewriting/Optimization: By successively applying rewriting rules that preserve the
correctness of the plan, it gradually improves the plans efficiency. This process continues until no
further rewriting is possibly, or until the allotted time runs out.

¢ Semi-Automated Modeling: By querying databases and other information sources and analyz-
ing the returned information, it discovers semantic rules characterizing their contents. This learned
knowledge is used to help create SIMS’ information source descriptions.

¢ Execution: It executes the reformulated query plan; establishing network connections with the appro-
priate information sources, transmitting queries to them and obtaining the results for further process-
ing. During the execution process SIMS may detect that certain information sources are not available,
or respond erroneously. In such cases, the relevant portion of the query plan will be replanned. In
addition, certain plans will contain steps that require replanning some plan branch some time into the
execution phase, after more information is known.




(db-retrieve (?depth)
(:and (port ?port)
(port.name ?port "SAN-DIEGC")
(port.depth ?port 7depth)))

Figure 1.2: Example SIMS/Loom Query

Each information source is accessed through a wrapper, a module that can translate from a description
of a set of data in SIMS’ internal representation language (Loom) into a query for that data that is then
submitted to the source. The wrapper also handles communication with the information source and takes
the data returned by it and sends it on to SIMS in the form SIMS expects.

1.2 Information Sources Supported

In order for SIMS to support an information source it must have a description of the source, and there must
exist a wrapper for that type of source. While each information source needs to be described individually,
only one wrapper is required for any type of information source.

Wrappers for Loom knowledge bases and MUMPS-based network databases have been written for SIMS.
In addition, through an “ODBC wrapper” SIMS uses ODBC to interact with all ODBC-enabled databases.
This includes Oracle, Sybase, Informix, Ingres, and many others. To add a new database of any of these types
requires, therefore, only to create an information source description for it. In order to add an information
source of a new type one would have to obtain, or write, a new wrapper for it as well. We are currently
working on wrappers for certain object oriented databases. We also have an ongoing associated effort
(Ariadne) that includes work on semi-automatic generation of wrappers for HTML pages.

1.3 Loom

This subsection is provided for readers who may not be familiar with the knowledge representation system
underlying SIMS.

Loom serves as the knowledge representation system SIMS uses to describe the domain model and the
contents of the information sources, as well as serving as an information source in its own right. It provides
both a language and an environment for constructing intelligent applications. Loom combines features of
both frame-based and semantic network languages, and provides some reasoning facilities. As a knowledge
representation language it is a descendent of the KL-ONE [12] system.

The heart of Loom is a powerful knowledge representation system, which is used to provide deductive
support for the declarative portion of the Loom language. Declarative knowledge in Loom consists of
definitions, rules, facts, and default rules. A deductive engine called a classifier utilizes forward-chaining,
semantic unification and object-oriented truth maintenance technologies in order to compile the declarative
knowledge into a network designed to efficiently support on-line deductive query processing. For a detailed
description of Loom see (49, 50].

To illustrate both Loom and the form of SIMS’ queries, consider Figure 1.2, which contains a very
simple semantic query to SIMS. This query requests the value of the depth of the San Diego port. The
three subclauses of the query specify, respectively, that the variable ?port describes a member of the model
class port, that the relation port.name holds between the value of ?port and the string SAN-DIEGO, and
that the relation port.depth holds between the value of 7port and the value of the variable ?depth. The
semantic query specifies that the value of the variable ?depth be returned. A query to SIMS need not
necessarily correspond to a single database query, since there may not exist one database that contains all
the information requested.



Chapter 2

Building a Planner for Information
Gathering

1 Introduction

This chapter examines the issues in applying a general-purpose planner to the information gathering task.
Information gathering involves locating and integrating information to answer queries from a set of het-
erogeneous and distributed information sources. An information gathering plan includes the source for the
information, the specific operations that are to be performed on the data, and the order in which the oper-
ations are to be performed. The general problem is quite hard since there are a very large number of ways
a query can be processed. The choice of plans is critical since the cost of executing different plans for the
same query can range from a few milliseconds to a few years or longer.

Consider the example query, shown in Table 2.1, from a transportation domain, which requests the
names of all seaports that have channels that can accommodate small tankers. A plan to answer this query
1s shown in Figure 2.1. In this example, the plan partitions the given query such that in parallel the seaport
information is retrieved from the SEAPORT information source and the tanker information is retrieved from
the ASSETS information source. The results of those two queries are then joined in the local system. The
plan then retrieves the information from the COUNTRY source and compares it to the intermediate results of
the other subplan. Once the system generates the final set of data, it is sent to the output.

(retrieve (7port-name)
(:and (seaport ?sport)

(port-name ?sport ?port-name)
(country-name ?sport "Saudi Arabia”
(channel-of ?sport Zchannel)
(channel-depth ?channel 7depth)
(transport-ship ?ship)
(vehicle-type-name 7ship "Small Tanker")
(max-draft 7ship ?draft)
(< ?7draft ?depth)))

Table 2.1: An Example Query

The information gathering task has a number of characteristics that make it an interesting planning
problem. First, the basic problem is to generate a sequence of actions to efficiently retrieve the requested
set of information. Unlike much of the previous work on planning, a satisficing solution is not sufficient
since the quality of the final plan is an important consideration. Second, the search space is large, but there
are fewer interactions than there are in domains such as the blocksworld, so it is possible to search a large
space of possible plans. Third, the plans produced in this domain can be directly executed, which makes
1t possible to consider issues of planning and execution without the use of a simulator. Finally, and most
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Figure 2.1: An information gathering plan

importantly, this is a real problem.

This problem is similar to the problem of generating a query access plan for a database in that both
require producing a sequence of actions to produce the requested data. However, it differs from query access
planning in several ways. The first difference is that query access planning only requires generating a plan for
how to process the data, while information gathering also requires identifying the relevant sources for use in
producing the requested information. The second difference is that query access planning is also concerned
with the low-level implementation of the query processing to minimize the processing time and amount of
disk I/O. In our formulation of the information gathering task, we are only concerned with determining how
the queries should be partitioned into subqueries to the remote sources and we leave it up to the individual
systems to implement the subqueries efficiently.

In earlier papers [38, 39] we addressed various issues related to planning for information gathering, such
as simultaneous actions, integrating planning and execution, replanning, and sensing. This chapter focuses
on the issues that arise in taking a general-purpose planner and using it to construct a planner for the
information gathering task. In order to provide insight into some of the design decisions we include some
discussion of how this planner has evolved over the last few years.

The chapter is organized as follows: First, we describe the underlying general-purpose planner and
identify both the important features and additional functionality that had to be added. Next, we describe
how we represent the information gathering task as a planning problem and identify some of the important
design principles. Given this representation, we then describe the control knowledge and evaluation function
used to efficiently generate high-quality information gathering plans. In order to demonstrate that the
system can efficiently generate plans, we provide some empirical results that compare the planning time to
the execution time. Then we compare this work to work on query access planning as well as other related
work on information gathering. Finally, we identify some of the critical planning research problems, and
then describe some of our plans for future work.

2 The Basic Planner

The first prototype of the overall system [8, 7] was built using the Prodigy 2.0 planner [53]. Prodigy was
chosen because it has a expressive operator representation language and a rich language for expressing control
knowledge. This initial version of the system produced a satisficing solution in that it searched the space
using a set of heuristics that produced a reasonably good solution. Since an important aspect of this problem
is plan quality, generating high quality plans requires exploiting the fact that remote sources can be accessed

9



in parallel. To do this required explicitly representing the potential parallelism in the plan. Since Prodigy
produces totally-ordered plans, the plans produced by Prodigy were converted into a parallel-execution plans
using the algorithm of Veloso [70], which converts a totally-ordered plan into a partially ordered plan.

In the next version of the system we switched to UCPOP 2.0 {10] because we needed a partial-order
planning capability. The initial version in Prodigy returned the first plan produced using the set of heuristics,
but as the plans became more complex it became clear that this was insufficient. In order to consider the
tradeoffs in different ways of processing a query, we needed to have the planner construct alternative plans
and evaluate the alternatives to find a high-quality plan. To do this using a total-order planner would be
costly since the final result is a partially-ordered plan and a number of different totally-ordered plans can all
map to the same partially-ordered plan. To avoid considering redundant plans and to evaluate the partially-
constructed plans, a partial-order planner is better suited to this particular task. In addition to providing
a partial-order planning capability, UCPOP provides a number of important features of Prodigy, including
an expressive operator language, a separate control language, and the capability of defining preconditions
using functional predicates (described below).

The expressive operator language is necessary for defining the operators in the information gathering
domain. The language features used in the current version of the domain are conjunction, disjunction,
existential, and universal quantification. The control language was used initially for this domain in both
Prodigy and UCPOP, but was later abandoned for efficiency reasons.

The ability to define preconditions using functional predicates is also a critical feature for representing
this problem. This feature allows certain predicates to be defined as functions, where given bindings for
some of the variables it computes the bindings of the other variables. This capability allows the operators to
be defined at an appropriate level of abstraction. The aspect of the information gathering problem that is
well suited to a planner is the search through the space of possible operations for selecting the sources and
manipulating the data. There are other aspects to this problem such as computing the possible partitions of
a query or determining whether a set of data is contained in a particular information source that would be
difficult to capture in a planner. The ability to define preconditions using functional predicates turns out to
be particularly useful since much of the low-level query processing can be done in Lisp code, which allows
the planner to focus on the search at an appropriate level of granularity.

There are several capabilities that are not provided by UCPOP that are required to solve the task. These
are the ability to represent and manipulate complex terms and the explicit representation of resources. The
representation of complex terms is essential since the specification of a set of data can be quite involved.
It includes the specification of the classes of objects, the relevant roles on those objects, constraints on the
individual objects as well as constraints between objects, and so on. An example of a complex term is shown
in the example query shown in Table 2.1. Terms such as these would be impractical to define as a flat literal
with a fixed number of parameters. It would also be difficult to plan for queries if they were represented by
a set of flat literals since that would require reasoning about the achievement of several simultaneous goals
and existing planners are not particularly well suited to that problem.

In order to execute several actions simultaneously in a partially-ordered plan requires an explicit
representation of reusable resources. A partially-ordered plan only allows actions that are unordered
with respect to each other to be executed in either order. It does not sanction simultaneous exe-
cution. To provide simultaneous execution requires the addition of explicit resource constraints [73,
38]. The advantage of parallel plans are that they can greatly reduce the overall execution time of queries by
supporting simultaneous execution. The representation of reusable resources allows the system to explicitly
reason about potential resource conflicts and take them into account in order to generate the best plan to
solve the problem. An alternative approach to address this problem would be to schedule the operations
after the planning is complete; however, this approach would be less efficient since in some cases there will
be several different operators for achieving the same goal and the choice of operator, which would be made
before the scheduling is performed, could have a significant impact on the schedule.

In order to address the needs of this application, we built a general planner called Sage, which extends the
UCPOP planner in several important ways. First, we added support for compound objects, which required
extending the matching algorithm. Second, we added an explicit representation of reusable resources and
extended the planner to identify possible resource conflicts and refine the plan to eliminate them. This
allows the planner to generate plans with simultaneous actions. (See [38] for more detail.)
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In addition, we added support in Sage for simultaneous and interleaved planning and execution. This
is done by tightly integrating the execution into the planning process and letting the planner decide which
actions to execute and when to execute them. This allows the planner to replan failed actions, handle
asynchronous goals, and interleave the planning and sensing. To support the sensing we added explicit
run-time variables [6, 21] which provide a mechanism for the planner to use the results of a sensing action.
The support for execution, replanning, and sensing are described in [39] and will not be described further
in this chapter. In the remainder of this chapter we will focus on how the information gathering task is
represented in Sage and how the planner efficiently generates plans in this domain.

3 Representing the Problem

The problem to be solved in this task is to determine a sequence of actions to efficiently retrieve a requested
set of data (i.e., the query). In the initial representation of this problem in Prodigy, we cast as much of this
problem as possible as a planning problem [7]. The operators manipulated the individual terms of a query
to determine which terms depended on other terms, which in turn determines the order in which different
queries would be executed. Once a complete plan graph was constructed, the resulting plan had to then be
converted into an actual query plan that could be executed. There were several important limitations of this
representation. First, the operators in the resulting plan did not correspond directly to the actual actions
that would be executed, which made it difficult to evaluate intermediate plans to more efficiently search the
space. Second, much of the work that was being done by the planner involved analyzing the structure of the
query, which could be done more efficiently in Lisp code.

In the next version implemented in UCPOP, we redesigned the representation of the problem with two
design goals in mind. First, we wanted the operators in the plan to correspond directly to the operators
that would actually be executed. This simplified the evaluation of intermediate plans and made it possible
to integrate the planning and execution. Second, we wanted the preconditions of these operators to be
completely self-contained goals. This simplified and modularized the overall design of the operators and
made it possible to extend the domain in new directions such as the integration of sensing into the system.
The difficulty in this choice of representation is that it placed a much greater burden on the processing
required for each individual operator. There are now more than 10,000 lines of Lisp code used to define the
functional predicates used in the operators.

Using this representation, a query is cast as an information goal. Such a goal consists of a description of
a set of desired data (i.e., the query) as well as the location where that data is to be sent. The form of this
goal is:

(available <source> <server> <query>).
The <source> is either the name of a remote source, Local to indicate the local knowledge base, or output
to indicate that the results should be displayed. The <server> is either the name of a server that can provide
one or more sources (e.g., an Oracle DBMS), or it is the name of the local information mediator, which is
called sims in the example. Finally, the <query> is a description of desired information. An example of an
information goal is shown in Table 2.2.

(available output sims
(retrieve (7port-name)
(:and (seaport 7sport)
(port-name ?sport 7port-name)
(channel-of ?sport ?channel)
(channel-depth 7channel 7depth)
(transport-ship 7ship)
(vehicle-type-name ?ship "breakbulk")
(max-draft 7ship ?draft)
(< ?draft 7depth))))

Table 2.2: An information gathering goal

All of the operators in this domain manipulate these information goals. There are two types of operators:
those that correspond to data manipulation operators and those that simply reformulate an information goal
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into an equivalent goal and are used to select an appropriate set of sources. The data manipulation oper-
ators include move, join, update, assign, select, and compute. The reformulation operators include:
choose-source, infer-equivalence, substitute-definition, and decompose. The reformulation opera-
tors are used to rewrite the query expressed in domain terms into queries expressed in terms of the available
information sources. The details of the reformulation operators are provided in [9].

Consider the operator shown in Table 2.3, which defines a join performed in the local system. This
operator 1s used to achieve the goal of making some information available in the local knowledge base of
the siMs information mediator. It does this by partitioning the request into two subsets of the requested
data, retrieving that information into the local system, and then joining the data together to produce the
requested set of data.

(define (operator join)
:parameters (7join-op 7data ?data-a 7data-b)
:precondition
(:and (join-partition ?data ?join-op
?data-a 7data-b)
(available local sims ?data-a)
(available local sims ?data-b))
:effect (available local sims ?data))

Table 2.3: The join operator

The join-partition precondition is defined by a functional predicate that produces the relevant par-
titions of the requested data. For example, the query described above would be partitioned into two sub-
queries based on how the information is organized in the underlying information sources. Since information
on transport-ship and seaport is located in different sources, the function would return the partition
shown in Table 2.4.

Join Constraint:
(< ?draft 7depth)

Subquery 1:
(retrieve (7port-name 7depth)
(:and (seaport 7sport)
(port-name ?sport ?7port-name)
(channel-of ?sport 7channel)
(channel-depth 7channel ?depth)))

Subquery 2:
(retrieve (?draft)
(:and (transport-ship ?ship)
(vehicle-type-name ?ship "breakbulk')
(max-draft ?ship ?draft)))

‘Table 2.4: Result of calling Join-Partition on the example query

The functional predicates process queries based on a model of the domain and models of the contents
of the information sources. This information comprises the static part of the initial state information. To
organize this information and access it efficiently, these models are stored in a knowledge representation
system called Loom [50]. The information is then accessed directly through the functional predicates, which
make direct calls to Loom.

The dynamic part of the initial state information is comprised of literals that define the available infor-
mation sources (e.g., databases) and the servers (e.g., an Oracle DBMS) they are running on. The example
shown in Table 2.5 defines four databases running on three different servers. The first two lines define two
Oracle databases running on a single Oracle server. The second two lines define two Loom knowledge bases
running on different servers.
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((source-available assets serverl)
(source-available geo serverl)
(source-available country server3)
(source-avajlable seaport server4))

Table 2.5: The dynamic part of the initial state

4 Searching for High-Quality Plans

This information gathering task is naturally cast as a planning problem since the problem is to find a
sequence of actions to retrieve and integrate the requested data. However, this task differs from much of the
previous planning work in that the problem is to find a high-quality plan rather than any plan that solves
the goal. In addition, since the cost of planning must be added to the overall processing time, the system
must efficiently produce plans. This section describes how Sage efficiently generates high-quality plans.

The size of the search space is potentially quite large in this domain. Unlike many other planning
domains, there are not a large number of interactions between operations. However, there are still a number
of aspects to this problem that all contribute to the size of the search space. First, there may be a number
of different possible orders in which the information can be processed. For example, if there are multiple
sets of data that must be combined (i.e., a join), then there could be many possible orders in which to
join the data. The order in which the data is combined is important since it determines the amount of
intermediate data that will be produced. Second, there may be more than one source where the requested
information can be retrieved and different sources may have different access costs. This may also affect what
information must be processed locally and what processing can be done by the remote system. Third, there
may be interactions between actions when two actions require the same resource. For example, if you have
two queries to the same server, then these will have to be done sequentially. Fourth, there may be several
alternative ways to combine information. For example, instead of retrieving two sets of data and performing
a join, it may be more efficient to retrieve the first set of data, and then use the results to compose a query
to the second source.

A natural approach to control the search is through the use of control rules. The control rules can be
used to prune portions of the search space that are redundant or unnecessary to produce the best plan.
In our initial implementation of the information gathering task we used the control rule language provided
by UCPOP. Unfortunately, the overhead involved in considering the control rules was too high and greatly
reduced the number of search nodes that could be considered in the same amount of time. This problem
could probably be addressed by adding an efficient rule matching facility to UCPOP. We took the more direct
approach of simply moving the control information directly into the definition of the functional predicates
used in the operators. This type of control information prunes portions of the search space that will never
need to be considered. For example, the operators consider only joins across data that are distributed in
different information sources. It will generally be less efficient to pull two sets of information from the same
information source and perform the join locally rather than in the remote source. In this case, this heuristic
is captured in the implementation of the join-partition function. We carefully crafted the functional
predicates to include this information so that they only generate choice points that are relevant to solving
the problem.

In addition to constraining the space as much as possible, we also want to minimize the portion of the
space that will need to be considered, but still consider alternative plans for processing the same query. To
do this we use a branch-and-bound search with an evaluation function (specific to information gathering) for
estimating the cost of alternative plans. Branch-and-bound expands the plan with the lowest estimated cost
at each step in the search process, which will produce the optimal plan relative to the given operator defi-
nitions and evaluation function. The evaluation function employs standard database estimation techniques
to estimate the cost of processing a query with a particular plan. The evaluation function estimates the
cost of each operation by maintaining information about the size of each class and the number of different
possible values for each role of a class (i-e., the cardinality of a role). Assuming a uniform distribution of
the data, it then estimates the amount of intermediate data that will be retrieved and manipulated, which
is usually the dominant cost in handling multidatabase queries. Using the estimated cost of each operation,
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the function computes an estimate for the overall cost of a plan, taking into account the parallelism of some
of the actions. The evaluation function allows the planner to compare different partially-constructed plans;
those plans that are more expensive than what the evaluation function determines to be the optimal plan
will never be expanded further.

5 Results

The Sage planner serves as the query processing engine for the SIMS information mediator [7, 41]. Using
SIMS we have built mediators to provide access to data for transportation planning and trauma-care medical
information. We are also in the process of building mediators to integrate information for genetics counseling
and military logistics. Note that for each of these applications the planner and planner domain remain the
same, but the underlying information sources and the models of the information sources are changed.

In the transportation planning domain, the planner efficiently generates plans for queries that have as
many as 30 terms and require access from up to three different information sources. To demonstrate that the
system can efficiently generate plans for queries in this domain, Figure 2.2 compares the time to construct
the plan for a query to the time for executing a plan (which does not include the planning time). The
problems are ordered by plan size and range from 2 steps to 10 steps. The graph compares elapsed time
and not CPU times since the execution of a plan occurs across multiple processes on different machines.
Since there is some variation in elapsed time, each of the queries was run 10 times and the average time for
each length plan is shown in the graph. The graph clearly shows that the planner can efficiently generate
information gathering plans for the given test set. In addition, this time is only a small fraction of the overall
execution time.

6 Related Work

The database community has been building specialized systems for performing query access planning for
many years [34, 65]. In order to address this problem these systems exploit a variety of heuristics and
techniques to constrain the search space. However, the problem is inherently a search problem, so there is
no way to completely eliminate the search. These approaches have been carefully optimized for the problem
of query processing in the single database environment and the distributed database environment. However,
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there has been less work on the problem of query processing for multidatabase systems (43, 61] where
there are a set of distributed, autonomous, and heterogeneous databases. The existing approaches in this
environment are inflexible in the sense that choice of the information sources for a given query 1s fixed and
the integration of this information is predefined. This essentially reduces the problem to the single-database
query access planning problem.

The information gathering problem described here differs from the more traditional query access planning
in two significant ways. First, instead of assuming that the choice of information source is fixed, as part
of the planning process the system selects the information sources that will be used for processing a query.
Second, traditional query access planning reasons about the query processing at a more detailed level which
involves not just the selection of which operation to perform on the data, but also how to implement the
operation efficiently (e.g., performing a join using a sort join or a hash join). Since we use other systems to
actually implement the query processing actions, we leave it to these system to decide on the most efficient
way to implement these operations. Instead, we have focused on the problem of deciding where to get the
information, where to process it, and what order to do the processing.

A variety of work on planning has explored various aspects of the query access planning problem. The
LADDER system [63] had a similar goal of integrating multiple sources of information. They developed a
planner [27] based on a theorem prover that is used to find the minimal set of sources to cover a query,
and they combined it with a specialized heuristic algorithm that produces an efficient query access plan.
In contrast, Sage uses a general planner for the query access planning and integrates the source selection
and query access planning into a single planning process, which allows the system to generate more efficient
plans.

More recent work on query access planning has focused on plan merging and plan optimization. Qiang
et al. [74] developed an approach to efficiently merging plans, including query access plans. Shekhar [66]
developed an approach to trading off search time with execution time in optimizing query access plans. Both
of these systems assume that the query access plans are given.

Another planner that has been built for a information gathering task is the XII planner [20]. This planner
serves as the query processor for the Unix Softbot [22]. Compared to Sage, XII reasons about the information
at a different level of granularity. Instead of representing general actions for manipulating data, each operator
corresponds to a Unix command. The advantage of their approach is that it provides finer-grained control
and reasoning of the information. The disadvantages are first, that the operators are application specific
and a new set of operators would have to be engineered to support another application domain. Second,
since the system reasons about the information as individual tuples instead of sets of information, it would
be impractical to efficiently reason about and manipulate large amounts of data.

Levy et al. [48] present a different approach to information gathering. In their work they have been
developing specialized algorithms for the problems of source selection and planning (essentially building a
special-purpose planner). They have focused largely on efficient algorithms for source selection.

7 Discussion

This chapter described our experiences in applying a general-purpose planner to solve the information
gathering problem. An important lesson from this work is that the issues that arise in this particular real-
world problem are different than the ones many researchers have focused on in the past and continue to work
on. Previous work on planning has focused extensively on both developing more expressive representations
and handling interactions between operators. While these are certainly important problems, other issues
such as constraining the space of plans so that it can be searched efficiently and generating high-quality
plans have been largely ignored.

Consider the issue of constraining the space of plans. There are a number of speed-up learning systems
that learn control knowledge to constrain the search space. But these systems do not fully address the
problem since these systems often reduce a very large search to a smaller one, but in most cases they do
not reduce search to the point where realistic problems in these domains can be solved. Other important
work on using planning technology to solve real problems, such as in SIPE [73] and O-Plan[15], has relied on
careful engineering of the domains such that problems can be solved with only a modest amount of search.
When people build specialized planners for specific applications they develop techniques and heuristics that
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make some interesting class of problems tractable. Planning research has focused heavily on the techniques
and seems to have neglected the infrastructure required for developing and exploiting the heuristics required
to solve real problems.

The issue of plan quality has received even less attention. Perhaps this is due to the fact that without
good heuristics there is not much hope of doing anything but a satisficing search. However, in many real-
world domains, (e.g., query access planning, process planning, logistics planning, etc.) finding a high-quality
solution is an integral part of the problem.

The next step in our work will focus on gathering and integrating semi-structured information in the
World Wide Web. In the Web we will have to deal with the problem of combining information from
many more sources. In addition, sensing actions will probably play a larger role since a query may require
gathering additional information in order to locate the relevant sources to answer a query [42]. We expect
that the combination of larger plans and more operators will require us to push even harder on techniques
for efficiently generating high-quality plans.
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Chapter 3

Compiling Source Descriptions for
Efficient and Flexible Information
Integration

1 Introduction

The problem of integrating data from heterogeneous collections of sources is ubiquitous. With the rise of
the Internet as well as intranets the number of available and relevant sources to an organization continues
to grow. One effective solution to this problem is the development of information mediators [71]. An
information mediator provides seamless access to a collection of related, but possibly heterogeneous and
distributed data sources. There are a variety of approaches to building information mediators, illustrated
by different approaches used in systems such as TSIMMIS [31], Garlic [30, 62], HERMES (1], Information
Manifold [48], InfoSleuth [35], and SIMS [7, 9], to name a few. However, one issue that is common to all
of these approaches is how to scale these systems to large numbers of information sources in a way that is
both computationally tractable and natural to the developers of new applications.

In information mediators, a central problem is how to efficiently process queries. This query optimization
problem consists of both selecting a set of sources that can be used to answer a query and generating a query
plan that specifies the order of retrieval and manipulations on the data. In this chapter we focus on the
first problem (also known as source selection) for a mediator with an expressive language for describing the
contents of sources. In Chapter 2 we present our approach to generating query plans using a cost-based
optimizer, which takes advantage of the source selection techniques presented here. Traditional cost-based
optimization and complex operations, such as aggregations and sorting, can be naturally supported within
our framework, although they are not addressed here. In this chapter we focus on the problem of how to
compactly represent and efficiently use the alternative combinations of sources that can be used to answer
queries posed to a mediator.

Our approach to source selection is to build a global domain model (sometimes referred to as a world
model) for an application and describe the contents of each of the sources in terms of the domain model.
Then the system automatically compiles the definitions of each of the sources into axioms that describe the
possible ways the sources can be combined to produce any of the information that may be requested for each
class in the domain model. The compilation algorithm is incremental, which means that when the available
sources are changed, added, or deleted, the system can efficiently update the axioms. Our approach provides
flexibility and source independence by describing sources in terms of the domain model and it provides an
efficient mechanism to incorporate source selection into the query processing.

The approach presented in this chapter can be viewed as a combination of sources modeled as views on
the domain model (e.g., Information Manifold [48]) and the domains classes modeled as views on the source
models [43]. The advantage of the former approach (also known as view rewriting) is that each source is
modeled independently of all the other sources, so new sources can be added and existing sources can be
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modified without changing the domain model. The disadvantage is that performing the view rewritings is
computationally hard and finding a complete answer to a query requires computing query containment in
both directions. Moreover, this expensive computation is repeatedly done at query planning time. OQur
approach has the advantage of source independence without the computationally difficult problem of testing
query containment during query planning. The advantage of the latter approach is that the sources required
to provide the data for a specific class of information can be determined by simply looking up the definition
of the domain class. The disadvantage is that determining these definitions is a difficult process to both build
and maintain. Our approach provides the advantage of being able to quickly determine the combination of
sources for a domain class since they are precompiled from the source definitions and avoids the disadvantage
of having to manually build and maintain the definitions.

A specific instantiation of this general approach to source selection has been developed for the SIMS
information mediator. This chapter describes the language used in SIMS for defining sources, the algorithms
for compiling the domain axioms from the source definitions, the approach to instantiating these domain
axioms at run-time, and the relationships with previous work. We also provide initial experimental results
comparing this approach to source selection in SIMS with the previous approach that performed the source
selection at run-time. Overall, our approach provides a simple, efficient, and elegant solution for integrating
heterogeneous data sources.

2 Background

In the SIMS project [7, 9] we are addressing the problem of providing integrated access to heterogeneous
distributed information sources. To build an application in SIMS, a user creates a domain model using the
Loom [50] knowledge representation language and describes the source contents in terms of this model. The
domain model establishes a fixed vocabulary describing object classes, their attributes, and the relationships
among them. SIMS accepts queries in this high-level uniform language, processes these queries, and returns
the requested data. Thus, the queries to SIMS do not contain information describing which sources are
relevant to finding their answers or where they are located. Queries do not need to state how information
obtained from different sources should be joined or otherwise combined or manipulated. It is the task of the
system to determine how to efficiently and transparently retrieve and integrate the data necessary to answer
a query.

In the previous work on SIMS [9] the selection of the sources was performed dynamically by searching
the space of query reformulations given the domain model and source descriptions. This approach provided
the flexibility we wanted in terms of dynamically selecting sources for answering queries; however, it did not
scale well to large numbers of sources since the search space becomes quite large as the number of sources
increases. The work described in the remainder of this chapter extends our previous work by precompiling
the source definitions into a set of domain axioms. The domain axioms compactly express the possible ways
of obtaining the data for each class in the domain model. This approach provides the same flexibility and
extensibility of the previous approach and can perform the source selection much more efficiently.

In the remainder of this section, we review the language for representing a domain, describe how the
sources are defined in terms of the domain model, and then present a detailed motivating example that is
used throughout the remainder of this chapter.

2.1 Modeling the Domain and the Sources

An information mediator typically has a representation of its domain of expertise, called the domain model,
and a set of source models, which are descriptions of information sources in terms of the domain model. Tn
SIMS, we use a KL-ONE style knowledge representation language called Loom. KL-ONE style languages,
also known as description logics, contain unary relations (classes), which represent the classes of the objects
in the domain, and binary relations (attributes), which describe relationships between objects.

Classes can be defined as either primitive classes or they can be defined in terms of other classes. A
primitive class is defined as a subclass without specifying the constraints that differentiate it from the
parent class. For example, one might define large-seaports as a subclass of seaports without specifying what
constraints differentiate it. In terms of modeling a set of sources, this is useful in the case where you have
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two sources, where one is clearly a subclass of the other, but there is no simple way to characterize the
specific subclass of information it contains.

A class can also be defined as a subclass of another class with the exact relationship specified as a
set of constraints on the class. For example, large-seaport might be defined as a seaport with more than
seven cranes. In addition, a class can be defined as the disjunction of a set of other classes. For example
seaports might be broken down into two subclasses: large-seaports and small-seaports. Disjunction of classes
(coverings) are useful for describing sets of sources that can be combined to produce a class of objects, such
as seaports.

A set of attributes is associated with each class and any subclass of a given class, C, inherits all of the
attributes of C. For purposes of integration, we also require that every class has at least one defined key,
which represents one or more attributes that uniquely identify the objects in a class. Since there may be
more than one way to uniquely identify a object, a class can also have multiple defined keys.

The domain model above is used to describe the available information sources. This is done by first
constructing the corresponding domain class for a source and then specifying which attributes are provided
by that source. A source description for source S with attributes S.a, ..., S.a; is written:

S(S.ai,...,S.a5) = Ds(ai,...,az)-

This specifies that the source S provides all instances of the class Dg with the corresponding attributes.
In contrast to other approaches to information integration, such as in the Information Manifold [48], we
assume that the source description defines exactly the class of information provided by the sources. This
can be done without loss of generality because containment can be expressed by defining a subclass in the
domain model. The advantage of exact descriptions are that it supports complete answers to queries, and
when complete answers are not possible, it allows the system to determine when and in what way answers
are incomplete. A limitation of our approach is that we cannot describe a source as a join over the domain
classes, although a new domain class could be constructed and the source could be linked to the new class.

2.2 Motivating Example

Using the definitions of the previous section, we present a complete example of a domain and description of
a set of sources. This example will be used throughout the remainder of the chapter to illustrate the basic
ideas.

Consider a very simple application domain that contains a variety of information sources about various
types of seaports. Figure 3.1 depicts the domain model constructed for this application domain. The domain
classes are shown by ovals and are linked in an inheritance hierarchy; in the diagram, inheritance links are
specified with solid arrows. As described above, a domain class can be primitively defined in terms of another
class, or it can be defined precisely in terms of another class by specifying a set of constraint expressions.
For example, the figure shows that a large seaport is defined as a subclass of seaport where the number of
cranes available is greater than seven. A class can also be defined to be equivalent to a covering (union) of
two or more other domain classes. For example, seaport is defined as the union of large and small seaports.
Every class may have a corresponding set of attributes, shown by arrows, and classes also inherit all of the
attributes of the classes above it. In this case seaport has four attributes, geographic location code (gc), port
name (pn), country name (cn), and number of cranes (cr). The class of European large seaports inherits all
of these attributes and also has an additional attribute, European code (ec), which is specific to this class.

In addition to the domain model, the available sources are also shown in the figure. These are shown
by the database symbols linked to the corresponding domain classes by dashed lines. The link between the
source and the domain class means that there is a one-to-one mapping between the instances of the domain
class and the instances in the source. In the example, there are three sources for the class large seaport:
the first source, s2, provides the attribute pn, the second source, s3, provides the source gc, and the third
source, s7, provides the attributes pn and cn. For the sake of simplicity, each information source described
here will be assumed to have only a single table in it; both the source and the table will be referred to by
the same name. Since sources might provide only a subset of the possible attributes of a class, the specific
attributes for each source are also shown in the figure.

There are a total of seven data sources, which provide different sets of attributes about components of
this domain, none of which provide all attributes for all classes. In the next section, we will explain how the
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Figure 3.1: Example Domain Model

sources definitions shown in the example are compiled into axioms that specify how to combine the sources
to produce the data for domain classes.

3 Compiling Domain Axioms from Source Definitions

A fundamental task of a mediator is to translate a query expressed in terms of the domain model into
queries to the underlying sources. This involves finding the relevant combinations of sources that provide
the attributes required by each class in the query. Instead of repeatedly searching for these combinations at
run-time for each query, our system compiles in advance a set of domain azioms that compactly capture these
combinations. Using these axioms, the system can improve the efficiency of query planning considerably
because the optimizer can use the readily available axioms as macro expansions avoiding the search involved
in constructing the combinations of sources for the domain classes. Moreover, the compilation effort is
amortized over all subsequent queries on the domain model and sources. This section describes the details
of how the domain axioms are pre-compiled and stored for efficient use at run-time.

A domain axiom specifies a particular way in which the available sources can be combined to provide
the data for a domain class. For example, the port-name for the class large-seaport can be directly retrieved
from the source s2, as can be seen in Figure 3.1. This would be expressed as the axiom:

large-seaport(pn) = s2(s2.pn)

There may be several axioms for a given class and set of attributes. For example, an alternative way of
obtaining the previous data for large-seaport is to perform a union over sources s4 and s5, which provide a
covering for the class, resulting in the axiom:

large-seaport(pn) = s4(s4.pn) V s5(s5.pn)

Since the number of possible combinations of attributes can be very large even for a single class, the
system does not compute all possible axioms for all combinations of attributes. Instead, the axiom generation
proceeds in a two phases. In the first phase, the system compiles, off-line, the minimal set of domain axioms.
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We call this set minimal because all valid domain axioms for each class and for each set of attributes can be
derived from it. Each axiom in this set provides as much information, as many attributes, as possible for
its particular combination of sources. For example, the previous axiom does not belong to the minimal set,
because two more attributes, cr and gc, can be obtained from the combination of s4 and sb. The following
“axiom, which incorporates all the attributes for this particular combination of sources, will be included in
the minimal set: '

large-seaport(cr gc pn) = sé(sh.cr sh.gc sh.pn) V s5(s5.cr s5.gc s5.pn)

In the second phase, the system organizes the axioms for each domain class into a lattice. Each lattice
is a partial order, using set containment, over subsets of attributes for a domain class. This data structure
caches the axioms that have already been computed and makes it possible to efficiently derive, at runtime,
new axioms for a given class and set of attributes in response to user queries. For example, if a query requests
large-seaport(gc pn), the corresponding axiom(s) will be derived from the stored axiom(s) for large-seaport(cr
ge pn). Section 3.1 describes the compilation of the minimal domain axioms and Section 3.2 describes how
the lattice structure is constructed and subsequently used during query processing.

3.1 Automatically Compiling the Minimal Set of Domain Axioms

The system automatically compiles the minimal set of domain axioms by applying a set of five inference
rules. Each rule captures an orthogonal type of inference about how sources can be combined based on our
representation language. The rules use the available source descriptions and the domain model. The five
rules are:

e Direct: Translates the supplied source definitions into axioms;

e Covering: Exploits the covering relationships in the domain model;

¢ Definition: Exploits the constraints in the definition of a domain class ;

o Inherit: Exploits the inheritance of superclass attributes via shared keys; and

e Compose: Combines axioms on a given class to provide additional attributes.

Our compilation algorithm first applies the Direct rule, and then the remaining four rules apply in
parallel until quiescence. Our algorithm is incremental, similar in spirit to the semi-naive evaluation of
logic programs. In the application of each rule at least one of the axioms involved must belong to the most
recent generation. Also, in order to avoid unnecessary computation, redundant and subsumed axioms are
eliminated at each generation. To facilitate this process the axioms are stored in a normal form (see below).
The remainder of this section will explain each of these rules in turn on the example presented in Section 2.2.
For purposes of exposition we will describe the application of the inference rules in a particular order.

The Direct Rule The Direct rule installs each source declaration, converted into the axiom representation,
into the axioms list for each class. An example installed axiom is:

seaport(cr gc pn) = sl(sl.crslge sl.pn) Acr = sl.er Age=slge Apn=slpn (1.1)

This axiom specifies that one way to obtain the number of cranes (cr), geoloc-code (gc), and port-
name (pn) of seaport is using the information source si. Note that the axiom is expressed in terms of
equivalence (=), not containment; that is, we are declaring that si(sl.cr sl.gc sl.pn) is co-extensional with
seaport(cr gc pn), but as explained before, this does not limit the generality of our representation because
containment can be expressed by subclassing in the domain model. The series of equality constraints on the
right-hand side detail the exact mapping between the domain-level attributes {cr, gc, pn} and the source
attributes {sl.cr sl.gc sl.pn}. Hereafter in the presentation, we will elide these binding equality constraints.

After the execution of the Direct rule, seven domain axioms have been associated with the classes of
our sample domain, as shown in Figure 3.2. They correspond precisely to the source definitions depicted in
Figure 3.1.

1The naming convention used in the chapter, where an attribute A of some concept always corresponds to a source attribute
named S.A in source S is not required by the system, but may assist the reader in understanding the presented axioms.
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seaport(cr gc pn) = sl(sl.cr sl.gc sl.pn) 1.1
small-seaport(cr pn) = s6(s6.cr s6.pn) 1.2
large-seaport(gc) = s3(s3.gc) 1.3
large-seaport(pn) = s2(s2.pn) 1.4
large-seaport(cn pn) = s7(s7.cn s7.pn) 1.5
american-large-seaport(cr gc pn) = s4(s4.cr s4.gc s4.pn) 1.6
european-large-seaport(crec gc pn) = s5(s5.cr s5.ec sb.gc s5.pn) 1.7

Figure 3.2: Axiom state after application of the Direct rule.

The Covering Rule When a class in the domain model is defined as being equivalent to a covering of
two or more of its subclasses, we can use this definition to generate new axioms for the parent class based on
the axioms of its subclasses. The rule retrieves the axioms for each subclass of the given covering and forms
the Cartesian product of these axioms sets. For each tuple of axioms in the Cartesian product, it computes
the intersection of the attributes provided by each axiom. If the intersection is not empty, a new axiom
providing the common attributes is generated. Then, from each axiom in the tuple, we project out any
attributes not included in the intersection. The body of the new axiom is the disjunction of the projected
axioms. For example, consider the following covering in the domain model:

large-seaport = american-large-seaport V european-large-seaport.
The Covering rule retrieves axiom (1.6) for american-large-seaport which provides cr, gc, and pn, and axiom
(1.7) for european-large-seaport which provides cr, ec, gc, and pn. The intersection set is {cr, gc, pn}. Both
axioms are projected through this intersection (which in this case simply amounts to removing the attribute
ec from the axiom for european-large-seaport) and combined by disjunction. The final axiom is:

large-seaport(cr gc pn) = sé4(s4.cr s4.gc s4.pn) V sb(sb.cr s5.gc sb.pn)  (2.4)

The Covering rule is applied across the class hierarchy in a bottom-up fashion. This order ensures that a
covering axiom produced at a lower level could participate in a later covering at a higher level. For example,
a covering axiom for large-seaport, computed from american-large-seaport and european-large-seaport, could
form part of a second covering for seaport. The specification of the algorithm used to process the coverings
is presented in Figure 3.3. In our example domain, after processing the coverings throughout the entire
hierarchy four more axioms are added, for a total of 11, as shown in Figure 3.4.

VC=Ci1VvCaV +-- VC;V --- VCp = Vi C;,C € C,C; € C, (Cfrom the hierarchy leaves to the root)
For each element {...[a1x(Z1%), 021(Z21), - @nm (Fnm)]...} € A1 X -+ X An,A; = AxioMs (C;)
Let Z = (Z1x NT2; N «-+ N Zpm).

If Z # @ then add axiom a(%) = PROJECTION (a(%1%), %) V
PROJECTION (a(Z2k ), Z) V
e
PROJECTION (a(Znm), &)

to Axroums (C).

Notation:

C is the set of all domain classes in the model hierarchy.

C is a particular domain class, C € C.

Axioms (C') holds the set of axioms for class C; it can be updated.

a(Z) € AxioMs (C) is a particular axiom, which provides attribute set Z.

PROJECTION (a(Z),%),§ C Z is a subroutine which eliminates from a(Z) any attributes or terms not needed to
obtain all of 7.

Figure 3.3: Algorithm for the Covering rule

The Definition Rule This rule exploits the constraints in the definitions of a domain class. Essentially,
when a class is defined in terms of a parent class and a set of constraints, the rule generates axioms for the
class by conjoining the axioms of the parent class with the constraints in the class definition. Note that the
axiom of the parent class needs to provide all attributes used in the definition constraints. Also, to avoid
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seaport(pn) = s2(s2.pn) V s6(s6.pn) 2.1

= s6(s6.pn) vV s7(s7.pn) 2.2
seaport(cr pn) = s4(s4.cr s4.pn) vV s5(s5.cr s5.pn) V s6(sé.cr s6.pn) 2.3
seaport(cr gc pn) = sl(sl.crsl.gcsl.pn) 1.1
small-seaport{cr pn) = s6(s6.cr s6.pn) 1.2
large-seaport(gc) = s3(s3.gc) 1.3
large-seaport(pn) = s2(s2.pn) 1.4
large-seaport(cn pn) = s7(s7.cns7.pn) 1.5
large-seaport(cr gc pn) = s4(sd.cr s4.gc s4.pn) V s5(s5.cr s5.gc s5.pn) 2.4
american-large-seaport(cr gc pn) = sd(s4.cr sd.gc s4.pn) 1.6
european-large-seaport(crec gc pn) =  s5(s5.cr s5.ec s5.g¢ s5.pn) 1.7

Figure 3.4: Axiom state after application of the Covering rule (new axioms in bold).

generating non-minimal axioms, the rule does not consider any parent axiom which includes a source for
the current class.2 This occurs when the parent axiom was generated by a covering that includes the child
class. The attributes of the parent axiom can only be a subset of those provided directly by sources to the
current class, and those axioms are already installed by the Direct rule. For example, consider the following
definition from the domain model:
small-seaport = seaport Acr < 7.
The Definition rule considers axiom (1.1) for seaport which provides the attribute cr needed for the constraint
er < 7. Since (1.1) did not result from a covering over small-seaport, the rules yields the following axiom:
small-seaport(cr gc pn) = sl(sl.cr sl.gesl.pn) Asl.cr <7 (3.1)
Note that the other three axioms for seaport are built from coverings involving the source s6 for small-seaport,
so they would not provide more attributes than what s6 provides directly, and the definition rule does not
apply.

The Definition rule is applied top-down across each class hierarchy of the domain model. Processing
in this order means that a given class may exploit definition axioms created in terms of axioms from its
ancestors as well as its direct parent, merely by processing the definition rule over any relevant axioms stored
with the parent. The specification of the algorithm used to handle class definitions is shown in Figure 3.5.
In our example domain, the application of the Definition rule generates two new axioms, for a total of 13,
as shown in Figure 3.6.

The Inherit Rule When a class in the domain model shares a key with one of its ancestor classes which has sources
for some attribute not available in the sources of a descendant class, the Inherit rule joins axioms from each class over the
shared key in order to provide the new attributes to the descendant. Intuitively, the information about an ancestor class can
be transferred to the descendant subclass as long as the system has a way of identifying those objects that belong only to the
subclass. In order to do so, this rule conjoins an ancestor axiom with a source for the subclass, similarly to the previous rule,
Definition, that conjoined an ancestor axiom with the definition constraints of the subclass. For example, there is no axiom
for class american-large-seaport that provides the attribute cn, but axiom (1.5) for large-seaport does provide it, and moreover,
axioms for american-large-seaport and large-seaport share a key (e.g., {pn}). Therefore, this rule generates the following axiom
which brings cn down to american-large-seaport:
american-large-seaport(cn cr gc pn) = s4(sd.crsd.gc sd.pn) A s7(s7.cns?.pn)  (4.5)

The Inherit rule applies bottom-up across the class hierarchy and looks at all ancestors of each class. In this way, it
considers all possible class/superclass combinations without ever encountering any axioms generated by previous applications
of the same rule to intervening classes. The algorithm for the Inherit rule is shown in Figure 3.7. For our example domain, this
rule generates six additional axioms, for a total of 19, as shown in Figure 3.8.

The Compose Rule The Compose rule ensures that the axioms for a domain class contain as many attributes as possible.
For each pair of axioms for a given class which share a key® and each provides attributes that the other does not, we can create
an axiom which pools their two sets of attributes. For example, axioms (1.5) and (2.4) for large-seaport should be composed

2In our system this type of reasoning is efficient. Because axioms are generated from particular rules, it is a simple matter
to record the proof tree for each generated axiom. This proof tree can be examined to answer such questions. The details of
this proof tree representation have been omitted from the discussion for brevity.

3 Actually, for which a petk of keys can be constracted.
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VC=C'ActAca A -+ Acn,CE€C,C'€C,
where C’ is an (immediate) parent class of C and
each constraint c; = (b; 8 m;)
with b; € ATTRIBUTES (C),
g€ {>1 27 < Sv = #}7
and constant m;
Let £ = {b; : 1 < 1 < n} be the set of all domain attributes used
in all definitional constraints for C
Val.(Zx) € Axioms (C')
if Z C Zx and a4} was not derived from a covering which includes C,
then add axiom a(Zx U Z) = aj(Tx) Ac1 Acz A +++cn to AXIOMS (C)

Notation:

C denotes a domain class.
ATTRIBUTES (C) is the set of all attributes defined in a particular domain class C.
b € ATTRIBUTES (C) or b € Z is a particular domain attribute.

. cdenotes a constraint expression used in a class definition. Order constraints (e.g., (CR > 7)), equality constraints
(e-g., (PN = “Long Beach")) and inequality constraints (e.g., (GC #£ “XJID")) between a single attribute and
constant are currently supported.

6 is an operator used in a constraint.
m is a constant used in a constraint.

Figure 3.5: Algorithm for the Definition rule

seaport(pn) = s2(s2.pn)V s6(s6.pn) 2.1

= s6(s6.pn) vV s7(s7.pn) 2.2
seaport{cr pn) =  sd(sd.crsd.pn) V s5(s5.cr s5.pn) V s6(s6.cr s6.pn) 2.3
seaport(cr gc pn) = sl(sl.crsl.gcsl.pn) 1.1
small-seaport(cr pn) =  s6(s6.cr s6.pn) 1.2
small-seaport(cr gc pn) & sl(sl.cr sl.gc sl.pn) Asl.er < 7 3.1
large-seaport(gc) = s3(s3.gc) 1.8
large-seaport(pn) = s2(s2.pn) 1.4
large-seaport(cn pn) = s7(s7.cns7.pn) 1.5
large-seaport(cr gc pn) = s4(sd.cr sd.gc s4.pn) V s5(s5.cr s5.gc s5.pn) 2.4

= sl(sl.cr sl.gc sl.pn) Asl.cr > 7 3.2
american-large-seaport(cr gc pn) =  s4(s4.cr s4.gc s4.pn) 1.6
european-large-seaport(cr ec gc pn) = s5(s5.cr s5.ec s5.gc s5.pn) 1.7

Figure 3.6: Axiom state after application of the Definition rule (new axioms in bold)

together because they share the key {pn}, and attributes {cn} and {sc, cr} appear uniquely in (1.5) and (2.4) respectively.
The conjunction of the two axiom formulas generates the following axiom (shown in disjunctive normal form):
large-seaport(cn cr gc pn) = [s4(sd.cr sd.gc sd.pn) A s7(s7.cn s7.pn) A sd.pn = s7.pn] v
[s5(s5.cr s5.gc s5.pn) A s7(s7.cn s7.pn) A s5.pn = s7.pn] (5.1)

The specification of the algorithm for Compose rule is presented in Figure 3.9. Because this rule processes only a single
class at a time, it can be applied over the class hierarchy in an arbitrary order. Figure 3.10 shows the axioms after the Compose
rule is applied. These are all the axioms for our example domain. The compilation process generates a total twenty axioms
from the seven initial source descriptions for the five domain classes.

VC € C having ancestor C’ € C,KEYs(C) N Kevs(C') # 0,
Vai(%;) € AxioMs (C)
Vai(z}) € Axioms (C')
where :E; —Z; £ 90
3k Cz Nz Ak €Kays(C) A a3(Z}) was not derived from a covering including ¢
then add axiom ap(Z; U 7) = a; A a; to Axioms (C).

Figure 3.7: Algorithm for the Inherit rule
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=

seaport(pn) = s2(s2.pn) V s6(s6.pn) 2.1

= s6(s6.pn) V s7(s7.pn) 2.2
seaport(cr pn) =  s4(sd.crsd.pn) V s5(s5.crs5.pn) V s6(s6.cr s6.pn) 2.3
seaport(cr gc pn) = sl(sl.crsl.gcsl.pn) 1.1
small-seaport(cr pn) = s6(sB.cr s6.pn) 1.2
small-seaport(cr gc pn) = sl(sl.ersl.geslpn)Asler <7 3.1

= sl1(sl.cr sl.gc sl.pn) A s6(s6.cr s6.pn) A sl.pn = sé.pn 4.1
large-seaport(gc) = s3(s3.gc) 1.8
large-seaport(pn) = s2(s2.pn) 1.4
large-seaport(cn pn) = s7(s7.cns7.pn) 1.5
large-seaport(cr gc pn) =  sd4(s4.cr sd.gc s4.pn) V s5(s5.cr s5.gc s5.pn) 2.4

= sl{sl.crsl.gcsl.pn) Asl.er > 7 3.2

= si(sl.cr sl.gc sl.pn) A s3(s3.gc) Asl.gec = s3.gc 4.2

= sl(sl.cr sl.gc sl.pn) A s2(s2.pn) Asl.pn = s2.pn 4.8
large-seaport(cn cr gc pn) = si(sl.cr sl.gc sl.pn) A s7(s7.cn s7.pn) A sl.pn = s7.pn 4.4
american-large-seaport(cr gc pn) = sd(sd.cr sd.gc s4.pn) 1.6
american-large-seaport(cn cr gc pn) = s4(sd.cr s4.gc s4.pn) A s7(s7.cn s7.pn) A s4.pn = s7.pn 4.5
european-large-seaport(cr ec gc pn) = s5(s5.cr s5.ec s5.gc s5.pn) 1.7
european-large-seaport(cn crec gcpn) = s5(s5.cr s5.ec s5.gcC s5.pn) A s7(s7.cn s7.pn) A s5.pn = s7.pn__ 4.6

Figure 3.8: Axiom state after application of the Inherit rule (new axioms in bold).

vCeC,
Divide Axioms (C)
into a set £ = {...i‘k : {akyl (:l—tk),ak’2 (i‘k), },
Zre1 * {0k, (Frt1)r0k41,2 (Erga), o do}
of equivalence classes over the attribute sets, ordered first by increasing size and then lexicographically.
V (pairs of classes) ex,e; drawn from E,1 > k
Ya; € eg
Vaj; € ¢
Vk € KEys(C)
If k C zx N7
Then create axiom a’(Tx U T;) = a; A gy
Insert a’ into the equivalence class for Zx U Z;, maintaining lexicographic order.
Finally, transfer all axioms in F to AxioMms (C).

Figure 3.9: Algorithm for the Compose rule

Normalization, Simplification and Projection Applying the rules above requires determining whether two
computed axioms are equivalent. For example, the Compose rule might independently reconstruct an axiom that had already
been computed by previous rules. In order to remove redundant axioms it is necessary to put the axioms into a normal form.
We have chosen a sorted disjunctive normal form as our basic representation. Once the formula is in this normal form, we
remove replicated predicates and implied order predicates in the conjunctions and across disjunctions.

An axiom provides a set of attributes for a class C. Obviously, it also provides all subsets of these attributes. It is useful to
find the simplified expression of an axiom a(Z) when only a subset 7 of its attributes are required. We call the resulting axiom
a'(y) the projection of a(Z) on §. First, we present some examples of projection intuitively. Then, we give a formal definition.
Consider the axiom:

large-seaport(cn cr gc pn) = [s4(s4.cr sd.gc s4.pn) A s7(s7.cn s7.pn) A s4.pn = s7.pn] V
{s5(s5.cr s5.gc s5.pn) A s7(s7.cn s7.pn) A sb.pn = s7.pn] (5.1)
The result of the projection on {cr, gc, pn} is:
large-seaport(cr gc pn) = s4(s4.crsd.gcsd.pn) V s5(s5.cr s5.gc s5.pn) (5.1')

Informally, the reasoning behind this projection is as follows. Given our source descriptions, either of s7(s7.cn s7.pn) or
[s4(s4.cr s4.gc s4.pn) V s5(s5.cr s5.gc s5.pn)] is enough to ensure that the data retrieved by (5.1') are in the large-seaport class.
But we only need the attributes {cr, gc, pn} which can all be obtained from the disjunction of s4 and s5. Therefore, s7 is
unnecessary and the projected axiom can be simplified. This example shows that a predicate appears in an axiom essentially
because either it forms part of the formula that proves that the axiom is equivalent to the given concept or it contributes some
of the needed attributes. Consider the axiom (8.2):

large-seaport(cr gc pn) = sl(sl.crsl.gcsl.pn) Asler>7  (5.2)
The projected axiom on {pn} is:
large-seaport(pn) = sl(sl.crslpn)Asler>7 (8.2)
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seaport(pn) = s2(s2.pn) V s6(s6.pn) 2.1

= s6(s6.pn) V s7(s7.pn) 2.2

seaport(cr pn) =  sd(sd.cr s4.pn) V s5(s5.cr s5.pn) V s6(s6.cr s6.pn) 2.8

seaport(cr gc pn) = sl(sl.crsl.gc sl.pn) 1.1

small-seaport{cr pn) = s6(s6.cr s6.pn) 1.2

small-seaport(cr gc pn) = sl(sl.crsl.gcsipn)Asler <7 3.1

= sl(sl.crsl.gc sl.pn) A s6(s6.crs6.pn) A sl.pn = s6.pn 4.1

large-seaport(gc) = s3(s3.gc) 1.8

large-seaport(pn) = s2(s2.pn) 1.4

large-seaport(cn pn) = s7(s7.cns7.pn) 1.5

large-seaport(cr gc pn) =  s4(s4.cr s4.gc sd.pn) V s5(s5.cr s5.gc s5.pn) 2.4

= sl(sl.crsl.gcsl.pn) Asl.er > 7 3.2

= sl(sl.crsl.gcsl.pn) A s3(s3.gc) A sl.gc = s3.gc 4.2

= sl(sl.crsl.gcsl.pn) A s2(s2.pn) A sl.pn = s2.pn 4.3

large-seaport(cn cr gc pn) = sl(sl.crsl.gesl.pn) As7(s7.cns7.pn) A sl.pn = s7.pn 4.4
= [s4(s4.cr s4.gc s4.pn) A s7(s7.cn s7.pn) A s4.pn = s7.pn] Vv

[s5(s5.cr s5.gc s5.pn) A s7(s7.cn s7.pn) A s5.pn = s7.pn] 5.1

american-large-seaport(cr gc pn) = s4(sd.cr s4.gc s4.pn) 1.6

american-large-seaport(cn cr ge pn) =  sd(sd.cr sd.gc s4.pn) A s7(s7.cn s7.pn) A sd.pn = s7.pn 4.5

european-large-seaport(cr ec gc pn) = s5(s5.cr s5.ec s5.gc s5.pn) 1.7

european-large-seaport(cn cr ec gc pn) = s5(s5.cr s5.ec s5.gc s5.pn) A s7(s7.cn s7.pn) A s5.pn = s7.pn 4.6

Figure 3.10: Axiom state after application of Compose rule (new axioms in bold). Minimal set of domain
axioms.

The constraint sl.cr > 7 is needed to ensure that the seaports provided by s1 are indeed large-seaports. In order to test this
constraint the attribute s1.cr has to be retrieved from sl even though it is not one of the requested attributes. Other examples
of projection appear in Section 3.2.

Formally, a subformula g of an axiom a = g A r for C (a = C) is called a core of a if ¢ = C and no subformula of g is also
a core. In other words, g is a minimal subformula of a that entails equivalence to the class C. Qur system efficiently computes
the cores of an axiom by using the derivation proof (based on the compilation rules) of the axiom. Recursively, the cores of
a compose are the cores of its components, the cores of a covering are the disjunction of the cores of components, the core of
a definition is the set of constraints, and the core of a direct is the direct source. For example, axiom (5.1) is obtained by
applying the Compose rule to a Covering axiom and a Direct axiom. Therefore, the two cores are s7(s7.cn s7.pn), direct, and
[s4(s4.cr s4.gc s4.pn) V s5(s5.cr s5.gc s5.pn)], disjunction of direct cores for each of the subclasses in the covering.

The projection of an axiom a(Z) for a class C on the set of attributes §, § C Z, is an axiom a’(7) that satisfies:

. All predicates of a’ appear in a
. @’ contains at least one core of a

. a’ contains more than one core only when each core uniquely provides some attribute in 17

W N =

- All predicates in the conjunctions of a’ are connected. Note that connections only occur either between ordinary
predicates that share a common key, or between an ordinary predicate and an order predicate on the attribute used in
the order predicate.

5. The only attributes in the body of a’ are those needed to satisfy the previous condition or are requested in .

3.2 Using the Domain Axioms Efficiently

Each axiom in the minimal axiom set provides as many attributes as possible for its particular combination of sources. However,
a user query may request any subset of the attributes of a domain class. Therefore new axioms for the desired attributes have
to be efficiently derived from the minimal set — or signal that the query is unsatisfiable because there are no sources for those
attributes. To that effect, the axioms for each class in the domain model are organized in a lattice. Each node in the lattice
holds the axioms that represent all alternative ways of obtaining a particular set of attributes. The edges of the lattice capture
set containment on attributes. An example of an axiom lattice that contains only the minimal axioms for the class large-seaport
appears in Figure 3.11.

A lattice for a domain class is constructed in two phases. In the first phase, the minimal set of axioms is transferred to the
lattice and the nodes are completed with supplementary axioms. The supplementary axioms are needed to ensure that each
node holds all possible axioms for its attribute set. This phase is performed still at axiom compilation time. In the second
phase, the lattice is used as an axiom cache and new axioms are generated as demanded by user queries. If a node for the
requested attributes for a class is already present in the lattice, the axioms of the node are returned. Otherwise, a new node
and corresponding axioms are computed. We refer to these as interstitial axioms since they lie between previous axiom sets
(logically and in the lattice).

Supplementary Axioms The minimal axioms in a node may not list all the possible ways of combining the available
sources to provide the attributes of the node. For example, in Figure 3.11, there is one additional way to obtain large-seaport(cr,
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{GC} {PN}

( S3(83.GC) 82(S2.PN)

{CR, GC, PN} ’/{CN PN}

| S4(S4.CR S4.GC S4.PN) v S5(S5.CR S5.GC S5.PN) 4
| S1(S1.CRS1.GC S1.PN)AS1.CR>7 | ST(STCNSTPN) |
| 51(S1.CR S1.GC 51.PN) A S2(S2.PN)

S1(S1.CR S1.GC S1.PN) A S3(S3.GC) .
{CN, CR, GC, PN} \/

S1(S1.CR 81.GC S1.PN) A S7(S7.CN S7.PN)
[S4(S4.CR $4.GC S4.PN) A S7(S7.CN 57.PN) v
S5(S5.CR S5.GC S5.PN) A S7(S7.CN S7.PN)]

Figure 3.11: Initial axiom lattice for large-seaport (with minimal axioms only).

gc. pn) by combining sources sl and s7. However the minimal axiom that combines s1 and s7, (4-4), provides more attributes,
{cn, cr, gc, pn}, and it is found in another node of the lattice. Fortunately, the desired axiom is easily computed from (4.4) by
projection:

large-seaport(cr, gc, pn) = sl(sl.crsl.gc sl.pn) As7(s7.pn)

Supplementary axioms are computed when the lattice is first constructed. For a given class the axioms are introduced in
the lattice in order of decreasing number of attributes. This corresponds to filling the diagram in Figure 3.11 bottom up. As
each node is added to the lattice, the axioms in the superset (child) nodes are examined. Any projection of a superset axiom
into the attributes of the current node, that is not equivalent to any of the axioms already present, is added to the node. The
specification of the algorithm for computing the supplementary axioms is shown in Figure 3.12. The supplementary axioms for
the example lattice are marked with an asterisk (*) in Figure 3.13.

vCeC
Create a lattice £ for C.
Sort Axioms (C) by decreasing number of attributes, then lexicographically
¥V axioms a(Z) € SORTED AXIOMS (C)
If a node N providing 7 does not exist in £, create it,
with links to any immediate parent and children nodes if such exist.
Add a(Z) to node N.
V children nodes n. of N
Ya. € PROJECTION (nc, F)
Add a. to N

Figure 3.12: Algorithm for determining supplementary axioms

Interstitial Axioms An axiom lattice of a domain class that includes only the minimal and supplementary axioms is
generally very sparse. A user query may request attributes that are not associated with any node in such lattice. Thus a new
node and axioms will have to be generated. Since the total number of nodes that could be computed is the power set of the
attributes, the interstitial axioms and nodes are not exhaustively precomputed. Instead, they are derived, on demand, from
other axioms already present in the lattice. The growth of the lattice results from user queries for unseen sets of attributes.

For example, suppose a query requesting large-seaport(cn cr pn) is received. If a node in the lattice for large-seaport
corresponding to the set {cn, cr, pn} exists, the axioms cached in the node are returned. Otherwise, a new node for {cn,
cr, pn} will be created and the corresponding interstitial axioms generated. To do so, all nodes which minimally contain the
set {cn, cr, pn} become the child nodes of the new node. The axioms from these child nodes are projected into {cn, cr, pn}
and used to populate the interstitial node. If no nodes contain the requested attribute set, there are no sources available for
those attributes and the user query is unsatisfiable. Figure 3.13 shows the axiom lattice for large-seaport after a request for
large-seaport(cn cr pn) has been satisfied and the interstitial node and axioms (marked with a hash - #) have been added. The
algorithm for on-demand synthesis of interstitial axioms is shown in Figure 3.14.
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Y

{CR, GC, PN} {CN, CR, PN}
S54(S4.CR S4.GC S4.PN) v 85(S5.CR S5.GC S5.PN) #81(S1.CR S1.PN) » S7(S7.CN S7.PN)
S1(S1.CR 81.GC S1.PN) A 81.CR > 7 #[S4(S4.CR S4.PN) ~ S7(S7.CN S7.PN)] v |
$1(S1.CR S1.GC S1.PN) ~ 82(S2.PN) [S5(S5.CR 85.PN) A S7(S7.CN S7.PN)] |
$1(S1.CR $1.GC S1.PN) A S3(S3.GC)
* S1(S1.CR S1.GC S1.PN) A S7(S7.PN)

{CN, CR, GC, PN}

81(S1.CR $1.GC 81.PN) A §7(S7.CN S7.PN)
[S4€S4.CR 84.GC S4.PN) A S7(S7.CN S7.PN) v
S5(85.CR §5.GC S5.PN) A §7(S7.CN S7.PN)]

Figure 3.13: Axiom lattice for large-seaport after generation of all supplementary axioms and single interstitial

nodes for large-seaport(cn cr pn). Supplementary axioms are marked with an asterisk (*) and Interstitial
axioms are marked with a hash (#).

Given some class C' and set of attributes T
Let £ be the lattice for C.
If a node N providing z does not exist in £,
Let N be the set of nodes from £ which correspond to a superset of Z.
N =90
then fail (Z for C' cannot be retrieved from the available sources)
else create N in £ providing .
Remove from N any nodes which dominate other nodes (set containment)
V immediate children n. € N,
VYa. € PROJECTION (nc, T)
Add a. to N

Figure 3.14: Algorithm for computing interstitial axioms

This section has presented an approach to source selection by pre-compiling a set of domain axioms and efficiently using
them during query processing. These axioms can be used to improve the efficiency of a query planner by having readily available
all the alternative ways of obtaining data for domain classes. Moreover, queries for which there are no sources are detected
immediately.

4 Experimental Results

In this section we present some experimental results on the performance of our axiom compilation algorithm for real world
knowledge bases and we compare the performance of source selection with and without the use of the compiled domain axioms.
We tested the algorithms with domains independently built for the SIMS mediator system.

Axiom compilation is fast in practice. In a transportation domain consisting of a domain model with 232 domain classes
and 82 source classes distributed over 8 sources, the system compiled 77 axioms in 2.5 seconds. The example domain we have
used throughout the chapter generates the 20 axioms from its 5 domain and 6 source classes in less than 0.1 seconds. Note that
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this domain though small combines all of representational features in one hierarchy. These results suggest that compilation for
domain of realistic size is efficient. Since the algorithm is incremental, even if the domain changes frequently the updates to
the axioms can be performed efficiently.

In order to show the benefits of the compiled axioms during query processing, in the transportation domain we compared
a version of the SIMS mediator that performs source selection using only the direct source descriptions with one that uses
the compiled axioms. We tested both configurations with a set of 35 domain queries. In order to measure the complexity of
rewriting for each query, we counted the number of reformulation operations that occur in the plans generated by the axiom-less
version of SIMS. These reformulations are rewrites required to translate a domain-level query into a source-level query.

The results for the transportation domain are shown in Figure 3.15. Each point is the average time to rewrite all queries at
the given level of difficulty. For the simple queries both systems perform comparably, but for harder queries the axiom-based
version of SIMS is up to 60 times faster than the axiom-less version. These results confirm our hypothesis that using compiled
axioms can significantly improve the scalability of mediator systems, while still providing a rich representation language for
describing the contents of sources.

180 : : : :

1801 original SIMS ——
[ SIMS + Axioms ——

120

100 |

CPU Time (sec)

e Y

0 2 4 6 8 10 12
Number of Reformulation Steps

Figure 3.15: Comparison of the SIMS mediator with and without domain axiom compilation

5 Related Work

Heterogeneous multidatabase systems typically use a global domain model to provide the “glue” to integrate multiple data
sources. The global domain model can be seen as providing common semantics to the information sources by means of views
that relate terms in the sources with terms in the domain model. There are two ways of specifying these views, which have
complementary properties [68]. The first approach, which has been widely used, is to integrate the sources by defining the
global schema as a collection of views (queries) over the sources. This general approach has been used in a variety of systems,
including Multibase [43], Pegasus [2], TSIMMIS [31], and HERMES [1]. An advantage is that the query rewriting algorithms are
very efficient. The rewriting consists of substituting domain terms by their definitions, and simplifying the resulting source-level
queries. A disadvantage is that adding or modifying a source can be quite difficult: all definitions in which that source appears
have to be manually reconsidered.

The second approach, exemplified by the Information Manifold [45], is to define each data source as a view of the global
domain model. Specifically, each source predicate is defined as a view over domain predicates. An advantage of this method
is that modifying the definitions or adding new sources is quite straightforward because each source is defined independently
from others. A disadvantage is that the algorithms to rewrite a domain-level query into a source-level query involves testing
containment of views, which is computationally expensive [45, 44]. The work presented in this chapter combines the best of
both approaches. Initially, sources are conveniently defined in domain terms, so that new sources are easily incorporated or
updated. Then, axioms defining domain terms as views over source terms are automatically compiled, so that query processing
can be performed more efficiently.

Another recent approach that also attempts to combine some of the features of both approaches is illustrated by the Garlic
system [30, 62). Instead of defining views of the sources or of the domain model, Garlic maintains a list of the sources that
can provide a portion of the data for each class and when it receives a query it queries each of the possibly relevant sources
to determine which portion of the required data the sources can provide. An advantage of this approach is that the individual
sources can provide accurate estimates of the cost of retrieving the data, so Garlic can put together efficient plans. The work on
Garlic addresses a different problem than the one addressed in this chapter and could be usefully combined with our approach.
Our work focuses on providing a rich representation language for describing the contents of sources and efficiently determining
how those sources can be combined to answer a query. In contrast, Garlic focuses on finding the most efficient combination
of possible sources, assuming a very simple representation language. The two approaches could be combined by first using
our work to represent the sources and determine how to combine the relevant sources and then using the Garlic approach to
estimate the cost of the different plans and select the most efficient one.

The Information Manifold (IM) [45, 44] also provides a rich representation languages that is combination of datalog and
description logic. However, view rewriting in its language is intractable and can become undecidable in the presence of recursion
[46, 47]. Nevertheless, Levy argues that his algorithm focuses on the relevant information sources, which is small in practice,
and the size of typical queries will also be small, so the theoretical intractability does not present a major problem. Views in
IM express containment relationships and IM produces query plans that are maximally contained rewritings. This implies that
the answer may be incomplete but the system does not signal it. View definitions in SIMS express equality and its query plans
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provide complete answers. SIMS can straightforwardly determine when a user query cannot be answered. More importantly,
SIMS can point to which classes of information it is missing and guide query relaxation.

Perhaps the most general approach to information integration is given by context logic [13, 29] which extends the predicate
calculus with a new modality, (ist ¢ ¢), meaning that a logical sentence ¢ is true in a context c. The logic is sound and
complete but undecidable. Lifting axioms relate formulas in different contexts, similarly to the view definitions above. The
Carnot system [14], and its successor InfoSleuth [35], use restricted forms of lifting axioms, similar to those of the Multibase
approach, expressed in a frame-based common language. A recent system using full context logic is [23]. Another general
system is Infomaster [17], which treats view rewriting as a form of abduction and uses a model elimination theorem prover
to implement it. Rather than focus solely on generality, our work considers also efficient query planning techniques, such as
the domain precompilation presented in this chapter, while at the same being able to represent a great variety of sources in
practice.

6 Contributions and Future Work

We have presented an approach to integrating information from heterogeneous data sources that combines the flexibility of view
rewriting with the efficiency of query processing typical of systems such as Multibase and TSIMMIS. In order to do so, our
system allows the user to conveniently define the information sources in terms of the domain model, and automatically compile
these source descriptions into a set of axioms that specify the domain model classes as formulas in source terms. Based on
the axioms compiled off-line, the system computes at run-time the most appropriate rewriting for answering a query by simply
instantiating the corresponding axioms. Our central idea is to shift the complexity of view rewriting to a preprocessing step
that can be done off-line and will be amortized as the mediator processes user queries.

Our compiled axioms facilitate query processing in the presence of partial information. The modeling language allows the
user to specify when a source has complete information for a class. However, in many real-world domains complete information
will not be available and the queries will have to be answered based on the available partial information. Having axioms
compiled for each domain class allows us to immediately recognize unsatisfiable queries and to identify exactly what class of
information is missing and inform the user what information can be provided.

The compiled axioms also facilitate replanning after failure. Information sources in distributed heterogeneous environment
may become unavailable during the execution of a query. It is desirable to provide an alternative way to answer that query,
reusing parts of the executed plan if possible. These alternative ways of obtaining the required data are at hand in the compiled
axioms.

We are in the process of extending our source descriptions and axiom compilation algorithm to include binding patterns
[67]. Binding patterns represent a type of constraints on the capabilities of an information source, in which the source needs
one or several input values in order to produce additional data. This type of behavior frequently occurs in Web sources. We
are also developing a generic cost-based query planner based on rewriting rules that take advantage of the source selection
techniques introduced here [3, 4].
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Chapter 4

Planning by Rewriting: Efficiently
Generating High-Quality Plans

1 Introduction

Planning is the process of generating a network of actions that achieves a desired goal from an initial state of the world.

Domain independent planning accepts as input, not only the initial state and the goal, but also the domain specification (e,

the operators). This is a problem of considerable practical significance, but domain-independent planning is computationally

hard except for its simplest formulations [18]. Moreover, in many circumstances it is not enough to find any solution plan since

the quality of the solution is important. This chapter presents a new paradigm for efficiently generating high-quality plans.
Two observations guided the present work. First, there are two sources of complexity in planning:

o Satisfiability: the difficulty of finding any solution to a planning problem.

o Optimization: the difficulty of finding the optimal solution according to a given cost metric.

‘For a given domain, each of these facets may contribute differently to the complexity of planning. In particular, there are
many domains in which the satisfiability problem is easy and their complexity is dominated by the optimization problem. For
example, there may be many plans that would solve the problem, so finding one is simple (that is, in polynomial time), but
the cost of each solution varies greatly so that finding the optimal one may be difficult. We shall refer to these domains as
optimization domains. Some optimization domains of great practical interest are query access planning and process planning.!

Second, planning problems have a great deal of structure. Plans are a type of graphs with strong semantics, determined
both by the general properties of planning and each particular domain specification. This structure should and can be exploited
to improve the efficiency of the planning process.

Prompted by the previous observations, we developed a novel approach for efficient planning in optimization domains:
Planning by Rewriting (PBR). The framework works in two phases:

1. Generate an initial solution plan. Recall, that in optimization domains this is easy. However, the quality of this initial
plan may be far from optimal.

2. Tteratively rewrite the current solution plan improving its quality using a set of plan rewriting rules until either an
acceptable solution is found or a resource limit is reached.

There are several important points to note in this basic framework. First, the rewritten plans are always solutions to the
given planning problem. Thus, the search occurs in the space of solution plans, which is in many cases much smaller than the
space of partial plans that other planning systems usually explore. Second, efficient search of the space of rewritings is critical
to the success of the method. Thus, we adapt techniques from local search to help in this process. Finally, our framework
yields an anytime algorithm [16]). The planner always has a solution to offer at any point in its computation (modulo the initial
plan generation, which should be fast). This is a clear advantage over traditional planning approaches, which must run to
completion before producing a solution. Thus, our system allows the possibility of trading off planning effort and plan quality.
For example, in query planning the quality of a plan is its execution time and it may not make sense to keep planning if the
cost of the current plan is small enough, even if a cheaper one could be found.

As motivation, consider two domains: query processing in a distributed, heterogeneous environment and manufacturing
process planning. Distributed query processing [75] involves generating a plan that efficiently computes a user query. This
plan is composed of data retrieval actions at diverse information sources and operations on this data (such as join, selection,
etc). Some systems use a general-purpose planner to solve this problem [40]. In this domain it is relatively easy to construct
an initial plan and then transform it using a gradient-descent search to reduce its cost. The plan transformations exploit the
commutative and associative properties of the (relational algebra) operators and facts such as that when a group of operators

Interestingly, one of the most widely studied planning domains, the blocksworld, also has this property.
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can be executed together at a remote information source it is generally more efficient to do so. Figure 4.1 shows some sample
transformations.

join-swap

get(ql,dbl) M (get(g2, db2) M get(q3,db3)) &

get(g2,db2) M (get(ql,dbl) M get(g3, db3))

remote~join-eval

(get(R, db) M get(S,db)) A capability(db, join) = get(R X S, db)

Figure 4.1: Transformations in Query Planning

In manufacturing, the problem is to find an economical plan of machining operations that implement the desired features
of a design. In a feature-based approach [54] it is possible to enumerate the possible actions involved in building a piece by
analyzing its CAD model. It is more difficult to find an ordering of the operations and the setups that optimize the machining
cost. However, similar to query planning, it is possible to incrementally transform a {possibly inefficient) initial plan. Often,
the order of actions does not affect the design goal, only the quality of the plan, thus actions can commute. Also, it is important
to minimize the number of setups because fixing a piece on a machine is a rather time consuming operation. Such grouping of
machining operations on a setup is analogous to evaluating a subquery at a remote information source.

In summary, this chapter develops a new planning paradigm yielding several contributions. First, by using local search
techniques, high-quality plans can be efficiently generated. Second, the rewriting rules provide a natural and convenient
mechanism to specify complex plan transformations. Third, it offers a new anytime planning algorithm.

2 Planning by Rewriting
We will describe the main issues in Planning by Rewriting as an instantiation of the local search idea [56]:

o Selection of an initial feasible point: How to efficiently generate an initial solution plan.

o Generation of a local neighborhood: The neighborhood is the set of plans obtained from the application of the plan
rewriting rules.

o Cost function to minimize: The given plan evaluationfunction could range from a simple domain independent cost metric,
such as the number of steps, to more complex domain specific ones, such as query evaluation cost or manufacturing time
for a set of parts.

o Selection of the next point: What is the next plan to consider. This choice determines how the global space will be
explored and has a significant impact on the efficiency of planning. For example, steepest descent, first improvement,
random walk, etc.

In the following subsections we expand these topics. First, we introduce some background on planning and rewriting.
Second, we discuss the initial plan generation. Third, we show how the local neighborhood is generated by the rewriting rules
and present their syntax, their semantics, and a rule taxonomy. Finally, we address the selection of the next plan.

2.1 Planning and Rewriting Concepts

A plan is represented by a graph notation, in the spirit of partial-order causal-link (POCL) planners, such as UCPOP [58]. The
nodes are plan steps, that is, domain actions. The edges specify a temporal ordering relation among steps, imposed by causal
links and ordering constraints. A causal link is a record of how a condition is used in a plan. This record contains the condition,
a step that produces (establishes) it, and a step that consumes it (that is, a step which needs it as a precondition). By causality,
the producer must precede the consumer. The ordering constraints arise from solving operator threats and resource conflicts.
An operator threat occurs when a step has an effect that negates the condition of a causal link and can possibly be ordered
between its producer and its consumer. To prevent this situation, which possibly makes the plan inconsistent, POCL planners
order the threatening step either before the producer (promotion) or after the consumer (demotion).

Operators may need to use certain resources to perform their actions. In this chapter, we consider unit non-consumable
resources, that is, those that are fully acquired by an operator until the completion of its action, and then released to be
reused [38]. For this type of resource, steps requiring the same resource have to be sequentially ordered. Finally, note that all
conditions in the plan are fully ground because we start with a complete initial plan.

A plan rewriting rule, akin to term and graph rewriting rules, specifies the replacement under certain conditions of a partial
plan by another partial plan. Our system ensures that the rewritten plan remains complete and consistent. These rules are
intended to improve the quality of the plans.

2.2 Generation of an Initial Plan

Fast initial plan generation is domain-specific in nature. It requires the user to specify an efficient mechanism to compute
the initial solution plan. By the definition of optimization domains this should not be hard. We have experimented with two
approaches to construct feasible initial plans: using a planner with search control rules and exploiting simple domain-specific
approximation algorithms.
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A very general way of efficiently constructing plans is to use a domain-independent generative planner that accepts search
control rules. By setting the type of search and providing a strong bias by means of the search control rules, the planner
can quickly generate a valid, although possibly suboptimal, initial plan. For example, in the manufacturing domain we used
depth-first search and a goal selection heuristic based on abstraction hierarchies [37]. This combination quickly generates a
feasible plan, but often the time required to manufacture all objects is suboptimal.

For many domains, we expect that simple domain-dependent greedy algorithms will provide good initial plans. For example,
in the query planning domain, the system can easily generate initial query evaluation plans by parsing the given query. In the
blocksworld it is also straightforward to generate a solution in linear time using the naive algorithm: put all blocks on the table
and build the desired towers from the bottom up.

2.3 Generation of a Local Neighborhood

The plan rewriting rules determine the neighborhood of the current plan to be explored. They embody the domain-specific
knowledge about what transformations of a solution plan are likely to result in higher-quality solutions. In this section we
describe the syntax and the semantics of the rules, as well a taxonomy of plan rewriting rules.

Rule Syntax and Semantics

First, we introduce the rule syntax and semantics through some examples. Then, we provide a formal description. A sample
rule in the blocks world domain is given in Figure 4.2. Intuitively, it says that, whenever possible, it is better to stack a block
on top of another directly, rather than first moving it to the table.

(define-rule :name avoid-move-twice
:if (:operators ((7n1 (umstack ?bl 7b2))
(7n2 (stack ?bl ?b3 Table)))
:1inks (?n1 (on ?b1 Table) ?n2)
:constraints ((possibly-adjacent 7nl 7n2)
(:neq 7b2 7b3)))
:replace (:operators (7nl 7n2))
:with (:operators (7n3 (stack ?bl ?b3 7b2))))

Figure 4.2: Blocks World Rewriting Rule

A rule for a manufacturing domain [51] is shown in Figure 4.3. It states that if a plan includes two consecutive punching
operations to make holes in two different objects, but another machine, a drill-press, is also available, the plan can be parallelized
by replacing one of the punch operations by using the drill-press.

(define-rule :name punch-by-drill-press
:if (:operators ((7n1 (punch 7ol ?widthi 7ornl))
(?n2 (punch ?02 7width2 7orn2)))
:links (?n1 7n2)
:constraints ((:neq 7ol 702)
(possibly-adjacent 7nl1 7n2)))
:replace (:operators (?n1))
:with (:operators
(?n3 (drill-press 7ol ?widthl ZTorni))))

Figure 4.3: Process Planning Rewriting Rule

In general, the rule syntax follows the template in Figure 4.4. The rewriting algorithm is outlined in Figure 4.5. The
semantics of the rules is as follows. The antecedent, the :if field, describes a graph specification (operators, links, and
constraints) that is matched against the plan. The :operators field consists of a list of step number and step predicate pairs.
Each step predicate is interpreted as an step action (or as one of the resources used by the step, if the keyword :resource is
present, e.g. Figure 4.7). The :1links field consists of a list of link specifications. A link specification can match either any
ordering link in the plan, a causal link if a predicate is given, or an ordering link introduced in the resolution of threats (if
the keyword :threat is present). Finally, built-in and user-defined predicates can be specified in the :constraints field. The
built-in predicates include inequalities { :neq), comparison, and arithmetic predicates. The user-defined predicates may act as
filters on the previous variables or introduce new variables (and compute new values for them). Formally, the language of the
antecedent forms a conjunctive query with interpreted predicates against the plan graph. The rule matches can be computed
either all at the same time, as in bottom-up evaluation of logic databases, or one-at-a-time as in Prolog. Which option is
preferable depends on the search strategy.
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(define~rule :name <rule-name>
:if (:operators ((<nv> <np> {:resource}) ...)
:links ((<nv> {<1p>|:threat} <nv>) ...)

iconstraints (<ip> ...))
:replace (:operators (<nv> ...)
:links ((<nv> {<1p>|:threat} <nv>) ...))
:with (:operators ((<nv> <np> {:resource}) ...)

:links ((<nv> {<1p>} <nv>) ...)))

<nv> = node variable, <np> = node predicate,
<lp> = causal link predicate, {} = optional
<ip> = interpreted predicate, | = alternative

Figure 4.4: Rewriting Rule Template

1. Match rule antecedent, :if field, against the plan, returning a set of candidate rule instantiations.
2. For each antecedent instantiation:

(a) Remove from the plan the subgraph specified in the :replace field.
(b) Generate all consistent embeddings of the subgraph specified in the :with field.

Figure 4.5: Outline of Plan Rewriting Algorithm

Rules must be safe, that is, all the variables appearing in the consequent of the rules, :replace and :with fields, have to
appear in the antecedent. The :replace field identifies the subgraph that is going to be removed from the plan (a subset of steps
and links of the antecedent). The :with field specifies the replacement subgraph. The system generates all valid embeddings
of the replacement subplan into the original plan (once the subplan in the :replace field has been removed). Thus, a single
rule instantiation may produce several rewritten plans. The formal conditions for valid rewriting, a generalization from plan
merging in [26], are shown in Figure 4.6. It is possible to define rules whose application provably yields a correct plan. However,
this eager approach would require the generation of many rules with very long and specific antecedents, which are possibly
expensive to match. An alternative is a lazy approach in which the rule antecedents only include a subset of the conditions
necessary for a valid rewriting. In this case, when the rules are applied, the rewritten plans are checked for correctness. The
“lazy” approach allows the specification of more natural rules that express the main idea of the transformation instead of
focusing on technicalities or rare cases. We used the latter for our experiments.

A subplan S1, embedded in a plan P, can be replaced by a subplan 52, resulting in plan P/, iff

there exists an ordering O, such that

P'=(P-51)US2U0 is a consistent plan, and NetPreconditions(S2,P’) C  NetPreconditions(S1,P), and
UsefulEffects(S1,P) C UsefulEffects(S2,P’).

Useful Effects of a subplan S, embedded in a plan P, are those conditions present in causal links whose producer is in $ and
whose consumer is in P — S.

Net Preconditions of a subplan S, embedded in a plan P, are those conditions in causal links whose consumer is in S and
whose produceris in P — S.

Figure 4.6: Conditions for Valid Rewriting

A Taxonomy of Plan Rewriting Rules

In order to guide the user in defining plan rewriting rules for a domain or to help in designing algorithms that may automatically
deduce the rules from the domain specification (see Future Work), it is helpful to know what kinds of rules are useful. So far
we have identified the following general types of transformation rules.

Reorder: These are rules based on algebraic properties of the operators, such as commutative, associative and distributive
laws. For example, the commutative rule that reorders two operators that need the same resource in Figure 4.7, and the
join-swap rule in Figure 4.1 that combines the commutative and associative properties of the relational algebra.

Collapse: These are rules that replace a subplan by a smaller subplan. For example, when several operators can be replaced
by one, as in the remote-join-eval rule in Figure 4.1, which prefers to evaluate a join between two tables that come
from the same source at the remote source rather than locally (if the source has join processing capabilities). Another
example is the blocksworld rule in Figure 4.2.
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(define-rule :name resource-swap
:if (:operators ((?nl (machine 7x) :resource)
(?n2 (machine 7x) :resource))
:links ((?n1 :threat ?n2)))
:replace (:links (?nl1l 7n2))
:with (:links (7n2 7n1)))

Figure 4.7: Reorder Rewriting Rule

Expand: These are rules that do the inverse of collapse. Although we did not find this rule type in the domains analyzed so
far, it is easy to imagine a situation in which an expensive operator can be replaced by a set of operators that are cheaper
as a whole. For example, when some of these operators are already present in the plan and can be synergistically reused.

Parallelize: These are rules that replace a subplan with an equivalent alternative subplan that requires fewer ordering con-
straints. A typical case is when there are redundant or alternative resources that the operators can use. For example,
the rule punch-by-drill-press in Figure 4.3.

2.4 Selection of Next Plan

The strategy to select the next plan to consider determines the way the solution space is searched. The rules generate the
“natural perturbations” of a plan, but which rewriting, if any, will lead towards the global optimum cannot be predicted in
general. We have explored gradient descent techniques, such as first improvement and steepest descent. In first improvement,
the next plan to consider is the first rewriting that improves the cost. This has the advantage that the neighborhood is
generated only up to the point such a plan is found, but the improvement may not be the best that could be achieved in that
neighborhood. In steepest descent, the minimum cost plan within the neighborhood is chosen. This guarantees the biggest
improvement in cost in each iteration, but it requires the whole neighborhood to be searched.

In general, the space of rewritings and the cost functions are not convex, thus our gradient descent techniques can get
caught in local minima. To move towards the optimum escaping low-quality local minima, we used two techniques: restart
and random walk. In the first one, the system restarts the rewriting process a fixed number of times from a different initial
plan. This technique requires an initial plan generator that is able to provide several different /random initial plans. The second
technique is applied when the local minima are not strict and consists of a random walk of a fixed length along the plateau.

3 Initial Results

We have implemented the planner described in this chapter and applied it in several different application domains. In this
section we report on our initial results in the domains of manufacturing process planning and distributed query planning.

3.1 Process planning

The task in the manufacturing process planning domain is to find a plan to manufacture a set of parts. We implemented the
domain specification in [51]. This domain contains a variety of machines, such as a lathe, punch, spray painter, welder, etc,
which are used to perform various operations to produce a set of parts. In this domain all of the machining operations are
assumed to take unit time and the optimal plan is the one that requires the minimal length schedule. There are ten possible
machining operations for making a part. Sample rewriting rules for this domain appear in Figures 4.3 and 4.7.

To evaluate the performance of Planning by Rewriting (PBR), we compared it to a planner called Sage [39], which is an
extension of UCPOP that supports resources, execution and replanning. For PBR, we defined ten plan rewriting rules for this
domain and used a steepest descent search. We ran Sage with a best-first search over the length of the schedule (Sage-BFS)
in order to find the optimal plan. We used Sage with depth-first search and a goal selection heuristic based on abstraction
hierarchies (Sage-DFS) to generate plans as fast as possible. Sage-DFS is also used for the initial plan generator for PBR. We
tested each of the three systems on 300 problems that ranged from 1 to 12 goals (25 in each set). There were 80 provably
unsolvable problems. Sage-DFS was able to solve 22 more problems than Sage-BFS in the given search limit of 50,000 nodes
(Sage-DFS proved 16 solvable and 6 unsolvable). The plan size (number of steps) grows linearly with the number of goals, from
3 steps for the one goal problems to 14 steps for the 12 goal problems.

The results are shown in Figures 4.8 and 4.9. Figure 4.8 shows the average time on the solvable problems for each problem
set in the three configurations. Figure 4.9 shows the average schedule length for the problems solved by all planners. As shown
in the graphs, PBR takes slightly longer than Sage-DFS, as expected since Sage-DFS is also used to generate the initial plans
for PBR, but is able to improve their quality significantly. PBR performs about the same as Sage-BFS on the easy problems,
both in time and in quality. For harder problems, PBR is much more efficient than Sage-BFS and it produces plans whose
quality is close to the optimal. These results show the benefits of finding an suboptimal initial plan quickly and then efficiently
transforming it to improve its quality as proposed in PBR.
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3.2 Query planning

Distributed query processing involves generating a plan that efficiently computes a user query. This plan is composed of data
retrieval actions at diverse information sources and operations on this data. We used a simplified domain for the query planner
(Sage) of the SIMS mediator [9). We compare the performance and quality of the Sage planner and PBR for this domain, where
the query plans are trees of join operations.

In the query planning domain, Sage performs a best-first search with a heuristic commonly used in query optimization
that explores only the space of left join trees (Sage-BF'S). For PBR, we defined the join-swap rule of Figure 4.1. The initial
plans were random depth-first search parses of the query (Sage-DFS). To escape local minima, PBR generates and rewrites
three random initial plans and picks the best rewriting. The cost metric for all planners is based on an estimation of the
cost of the join operations and the size of the intermediate results transmitted between the sources and the mediator. In this
experiment, we used a set of 43 conjunctive queries previously defined for a logistics planning application involving from one
to seven relations. All queries could be solved by all planners. A set of eight relation joins could not be solved by Sage within
50,000 nodes, while PBR could easily solve them with low cost plans.

The results are shown in Figures 4.10, 4.11, and 4.12. Figure 4.10 shows the average time for each query set for query
sizes from one to seven. The times for PBR includes both the generation of the three random initjal plans and their rewriting.
Figure 4.11 shows the average quality of Sage-DFS and PBR. normalized with respect to Sage-BFS. The normalization is done
for clarity because the values for Sage-BFS query cost vary considerably and we want to show how PBR and Sage-DFS perform
relative to Sage-BFS as the problem size increases. The graph shows that Sage-DFS produces very poor quality plans on
the large problems. Figure 4.12 shows in more detail the average quality of PBR normalized with respect to Sage-BFS. This
graph shows that PBR performs as well as Sage-BF'S for the smaller queries and even finds better solutions for the larger ones
(up to 12% better). This is not surprising because of the restricted space of left trees that Sage-BFS is searching. As in the
manufacturing domain, PBR shows better scaling properties than the corresponding systematic algorithms.

4 Related Work

Some of the most closely related work is on plan merging [26]. Their system solves a complex goal by dividing it into subgoals,
solving the subproblems, and combining the partial solutions exploiting synergies. They improve the quality of a plan by
replacing a set of operators by one operator that can do the same job. Planning by Rewriting differs in that it starts with
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a complete solution plan for the original goal, and it generalizes plan merging by allowing the replacement of a subplan by
another subplan, thus expanding the types of plan transformations and the opportunities for cost reduction.

Case-based planning also attempts to solve a problem by modifying a previous solution [69, 57]. Systematic algorithms,
such as [33], invert the decisions done in refinement planning to find a path between the solution to a similar old problem
and the new problem. Our work modifies a solution to the current problem, so there is no need for similarity metrics, nor
retrieval process. Moreover, our rewriting rules indicate how to transform a solution into another solution plan, rather than
searching blindly up and down the space of partial plans. However, the rules in PBR may search the space of rewritings
non-systematically. Such an effect is ameliorated by the gradient-descent search strategy.

Local search has a long tradition in combinatorial optimization [56]. Local improvement ideas have found application in
constraint satisfaction, scheduling, and heuristic search. In constraint satisfaction, [52] start with a complete, but inconsistent,
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variable assignment and efficiently search the space of repairs using a simple heuristic, min-conflicts. In our work we focus
on a STRIPS-like planning paradigm (with fairly expressive operators) in which the rewritings yield complete and consistent
plans, as opposed to complete but inconsistent variable assignments. In work on scheduling and rescheduling, [76] define a set
of general, but fixed, repairs methods, and use simulated annealing to search the space of schedules. Qur plans are networks of
actions as opposed to the metric-time total-order tasks in that work. Also we can easily specify different rewriting rules (general
or specific) to suit each domain, as opposed to their fixed strategies. Related ideas have been used in heuristic search [60]. In
that work, first they find a valid sequence of operators using an approximate algorithm. Then, they identify segments of this
sequence, take their initial and end states, and heuristically search for a shorter path for that segment (the cost metric is the
path length). They are doing a state-space search, while PBR is doing a plan-space search. The least-committed partial-order
nature of PBR allows it to optimize the plans in ways that cannot be achieved by optimizing linear subsequences.

A variety of research has attacked the complexity of planning. Some systems incorporate automatically learned search
control, for example, search control rules [51] and abstraction [37]. Our system does not learn the rewriting rules currently (see
Future Work). Other work has reduced planning to propositional satisfiability, which can be solved by stochastic local search
[36]. These approaches do not specifically address plan quality, or else they consider only very simple cost metrics (such as the
number of steps). Quality-improving control rules are learned in [59], but planning efliciency was not significantly improved. By
exploiting domain-specific knowledge, conveniently expressed as plan rewriting rules, and the local search approach, we improve
both plan efficiency and quality. Moreover, we provide an anytime algorithm while other approaches must run to completion.

Some domain specific planners have also used a transformational approach, for example, query evaluation in centralized
databases [28]. They parse the query to obtain an initial evaluation plan and iteratively transform this plan using a set of rules
based on the algebra of the data model. PBR offers a more general and easily extensible framework to tackle more complex
information gathering domains. Finally, the research in graph rewriting [64] may provide efficient matching algorithms and
perhaps another implementation vehicle using high-level graph-rewriting programming languages.

5 Future Work

There are several issues that we plan to address more thoroughly in the future: initial plan generation, automaticrule generation,
and alternative search strategies. Initial plan generation is domain-specific, but we intend to provide a domain independent
procedural plan construction language to allow the convenient specification of plan construction algorithms. It will include
primitives for adding steps and ordering constraints, but it will hide the complexity of the data structures used to represent
the actual plans. :

We believe that the rules can be generated by fully automated procedures in many domains. The methods can range from
static analysis of the domain operators to analysis of sample equivalent plans (that achieve the same goals but at different
costs). Note the similarity with methods to automatically deduce search control [51, 19] and also the need to deal with the
utility problem.

There are many techniques in the local search literature that we could adapt to our framework. In particular, we plan to
explore variable depth rewriting, and variations of tabu search. In variable depth, a sequence of rewritings is applied in order
to overcome initial cost increases that eventually would lead to strong cost reductions. This idea leads to the creation of rule
programs, which specify how a set of rules are applied to the plan, possibly depending on run-time conditions. In tabu search,
some of the rewritings are temporarily forbidden regardless of their cost. This is useful to avoid returning to some previously
visited plan and thus cycling. Also, it forces the search not to be concentrated in a small local area around a local minimum.
Finally, we plan to improve the planner implementation. For example, a RETE-like graph matcher [25] would make the system
much more efficient.

6 Conclusions

We presented a new paradigm for efficient high-quality planning based on local search and plan rewriting, and we provided
initial experimental support for its usefulnessin several domains. This framework achieves a balance between domain knowledge,
conveniently expressed as plan rewriting rules, and general local search techniques that have been proved useful in many hard
combinatorial problems. We expect that these ideas will push the frontier of solvable problems for many domains into the range
of real-world problems in which high quality plans and anytime behavior are needed.
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Chapter 5

Planning, Executing, Sensing, and
Replanning

1 Introduction

The task of information gathering requires locating, retrieving, and integrating information from large numbers of distributed
and heterogeneous information sources. In this environment, flexibility and efficiency are critical. The usual approach of
generating a static plan for processing information and then executing it is inflexible and may be very inefficient if problems
arise during query processing. The problem is that there may be many information sources from which to choose, actions may
fail, the system has incomplete knowledge about the available information, and new goals may arise at any time.

To address these problems, we have developed a planning system that builds on previous work on planning, execution,
sensing, and replanning. The planner, which we call Sage, was implemented by augmenting UCPOP [58, 10] with the capabilities
to produce parallel execution plans [72, 38], interleave planning and execution [5, 20], support run-time variables for sensing [5,
21], perform replanning where appropriate, and plan for new goals as they arise. We have integrated all of these capabilities
into a single, unified system in which planning, sensing, and replanning can be performed during execution. This allows the
system to replan portions of the plan that is currently being executed, receive and plan new tasks within the context of the
executing plan, and interleave sensing actions with planning in order to improve efficiency.

Before describing the integration of planning and execution, we first describe the information gathering task and how it can
be cast as a planning problem in a general planning framework (Section 2). Next, we present our approach to tightly integrating
planning and execution (Section 3). This integration is used to support planning for new goals, replanning for failure, and the
interleaving of sensing actions to gather additional information for planning (Section 4). We compare this work to previous
work in planning as well as information gathering and query processing (Section 5). Finally, we conclude with a discussion of
the contributions of the chapter (Section 6).

2 Planning for Information Gathering

Information gathering requires selecting, integrating, and retrieving data from distributed and heterogeneous information
sources in order to satisfy a query. The relevant data must be selected from numerous, possibly overlapping or replicated
sources. Integrating the information may be costly, especially when combining data from different sites. Retrieving the
information may be time consuming due to the distribution of data and the contention for limited resources.

To solve this problem, we have developed a planner called Sage that builds on the UCPOP partial-order planner [10]. ucpopP
provides an expressive operator language that includes conjunction, negation, disjunction, existential and universal quantifiers,
conditional effects, and a functional interface that allows preconditions to be implemented as Lisp functions. We extended this
planner to support simultaneous action execution and to tightly integrate planning and execution. The execution is presented
in the next section, and the support for simultaneous actions was previously addressed in [38] and will be briefly described here.

Partial-order planners, such as UCPOP, produce plans with actions that are unordered. However, if two actions are left
unordered they can be executed in either order, but not simultaneously. To execute actions in parallel in a partial-order planner
requires that (1) actions can be executed simultaneously without changing the outcome of the individual actions, and (2) any
potential resource conflicts must be captured in the representation of the operators in order to avoid conflicts during execution.
We assumne that the first condition holds (as it does in the information gathering domain described below) and we extended
the planner to support the second condition. To support reasoning about resources, we added an explicit resource declaration
to the action language, which describes the resources required when executing an action. We also augmented the planner to
identify and remove potential resource conflicts. With these extensions, any actions left unordered in the final plan can be
executed simultaneously.

In the remainder of this section we describe how the information gathering task is cast as a planning problem in Sage. This
problem requires producing a plan for generating a requested set of data. This involves selecting the sources for the data, the
operations for processing the data, the sites where the operations will be performed, and the order in which to perform the
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operations. Since data can be retrieved from multiple sources and the operations can be performed in a variety of orders, the
space of possible plans is large.

An information gathering goal consists of a description of a set of desired data as well as the location where that data is
to be sent. For example, Table 5.1 illustrates a goal which specifies that the set of data be sent to the OUTPUT device of the
sIMs information mediator [7, 41]. The goal also specifies the data to be retrieved and is defined using the syntax of the query
language of the Loom knowledge representation system [50]. This particular query requests all port names of seaports that are
sufficiently deep to accommodate “breakbulk” ships.

(available output sims
(retrieve (7port-name)
(:and (seaport 7sport)
(port-name 7sport 7port-name)
(channel-of 7sport 7channel)
(channel~depth 7channel ?depth)
(transport-ship 7ship)
(vehicle-type-name 7ship "breakbulk")
(max-draft 7ship ?draft)
(< 7draft ?depth))))

Table 5.1: An information gathering goal

The initial state of a problem defines the available information sources (e.g., databases) and the servers (e.g., an Oracle
DBMS) they are running on. The example shown in Table 5.2 defines two servers, an Oracle database server running on an HP
workstation, called hp-oracle, and an another Oracle server running on a Sun workstation, called sun-oracle. Both servers
contain identical copies of the GEG and ASSETs databases. In addition to this information, a description of the contents of the
information sources is stored in a Loom knowledge base. However, this information is static and is accessed directly through
the functional interface rather than through the literals listed in the initial state.

((source-available geo hp-oracle)
(source-available assets hp-oracle)
(source-available geo sun-oracle)
(source-available assets sun-oracle))

Table 5.2: An initial state

For this domain, Sage uses a set of ten general operators to plan out the processing of a query. They include a move operator
for moving a set of data from one information source to another, a join operator that combines two sets of data into a combined
set of data, and a select-source operator for selecting the information source for retrieving a set of data. The other operators
perform additional processing of data (select, compute, and assignment) or reformulate queries using background knowledge
(generalize, specialize, definition, and decompose). Each operator is instantiated at planning time with the particular set
of data being manipulated as well as the database where the manipulation is being performed.

Consider the operator shown in Table 5.3, which defines a join performed in the local system. This operator is used to
achieve the goal of making some information available in the local knowledge base of the sIMs information mediator. It does this
by partitioning the request into two subsets of the requested data, retrieving that information into the local system, and then
joining the data together to produce the requested set of data. The available preconditions are achieved by other operators
and the join-partition precondition is defined by a function that produces the relevant partitions of the requested data.

This planning domain differs from many of the domains that previous planning work has focused on in two significant ways.
First, there are few interactions between the operators. The main source of interaction arises in handling resource conflicts

when two operators require access to the same server. Second, it is not sufficient to find any solution to a problem; the goal-

(define (operator join)
:parameters (?join-op 7data 7data-a ?data-b)
:precondition
(:and (join-partition ?data ?join-op
?data-a ?data-b)
(available local sims ?data-a)
(available local sims ?data-b))
:effect (available local sims ?data))

Table 5.3: The join operator
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Figure 5.1: An information gathering plan

is to find an efficient solution. The first difference makes the problem somewhat easier, while the second difference makes the
problem significantly harder since it may require searching a large space of plans.

In order to generate query access plans efficiently, we have carefully constrained the space of possible plans. We wrote
the operators such that they generate only the relevant portions of the search space. Some examples of this are: first, the
operators only reason about joins in the local system, since joins in the remote systems will be handled by the remote database
management system and the planner has no control over how or in what order these are performed. Second, the operators
consider only joins across data that are distributed in different information sources. It will generally be less efficient to pull
two sets of information from the same information source and perform the join locally rather than in the remote source. Third,
since we usually do not have write access to the remote databases, information can only be moved from the remote systems to
the local system or directly to the output. However, even with a set of carefully designed operators, the search space may still
be very large since the operations can be performed in different orders, and there may be multiple replicated and overlapping
sources from which the information can be retrieved.

To further constrain the overall search for an efficient plan, we also employ standard database estimation techniques to write
an evaluation function to guide the search. The planner uses the evaluation function in a branch-and-bound search, estimating
the cost of each intermediate plan and selecting the plan with the lowest overall execution cost. The cost of each operation
is estimated by maintaining information about the size of each relation and the number of different possible values for each
attribute of a relation. Assuming a uniform distribution of the data, we then estimate the amount of intermediate data that
will be retrieved and manipulated, which is usually the dominant cost in handling multidatabase queries. Using the estimated
cost of each operation, we can then compute an estimate for the overall cost of a plan, taking into account the parallelism of
some of the actions. The evaluation function allows the planner to compare different partial plans; those plans that are more
expensive than the plan eventually selected will never be expanded further.

The final plan generated for the example query in Table 5.1 is shown in Figure 5.1. This plan shows where the information
is retrieved from and how the information is manipulated to produce the requested data. The system works backward from the
goal to produce a plan to retrieve the data. In this particular plan the final move operator is used to achieve the original goal
of sending the requested data to the output; it also generates the subgoal of getting the data into the local system. Next, the
system considers how to get the data into the local system and since the information is not available in any single information
source, it selects the join operator, which decomposes the original goal into two simpler information goals. Each of these simpler
goals is then achieved by using the select-source operator to select a relevant source for each of the requests and translate the
requests into subgoals that use the terminology of the selected information source. These goals are in turn achieved by moving
the information from the remote information sources into the local system. When this plan is executed, all of the information
is brought into the local siMs mediator, where the draft of the ship can be compared against the depth of the seaports. Once
the final set of data has been generated, it is sent to the output.

The approach of searching the space of plans to find the best one is similar to what is done in other systems for producing
query plans for relational databases [65). These systems typically generate the space of query access plans, constraining the
space of plans with appropriate domain-specific heuristics, and then evaluate the plans and select the best one. An important
difference from traditional query planning systems is that in those systems the source from which the information is to be
retrieved is fixed, whereas part of the planning process described here includes the selection of an appropriate information
source. While this makes the problem harder, it also provides a much more flexible approach to integrating distributed and
heterogeneous sources of information.

So far we have described the approach to generating query plans for information gathering in a distributed and heteroge-
neous environment. In addition to generating a plan, the system must also execute it. However, unlike traditional database
environments, there are a number of problems and issues that arise when dealing with distributed and autonomous informa-
tion sources. Information sources may be unavailable, queries may fail, new information requests may arise that compete
for resources with the currently executing plan, and additional information may be required to select an appropriate plan or
formulate an efficient query. In the remainder of this chapter we will describe how planning and execution are tightly integrated
and how this integration is used to address the issues that arise during execution.

3 Integrating Planning and Execution

Planning and execution are tightly integrated by considering execution as an integral part of the planning process. This is done
by treating the execution of each individual action as a necessary step in completing a plan. The goal of the planner becomes
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producing a complete and executed plan rather than just producing a complete plan. Just as achieving all of the preconditions
of a plan is required for a complete plan, executing each of the actions is also part of the final result.

Sage keeps track of the current status of every action in the plan by marking them as either unerecuted, erecuting, completed,
or failed. This is similar to how execution was integrated into 1PEM [5]. The underlying planner, UCPOP, maintains a list of
flaws, which is an agenda of things that need to be done to complete a particular plan. These flaws include open conditions,
which are subgoals that have not yet been achieved, and threats, which are potential interactions between operators that must
be resolved by adding ordering or binding constraints. We integrated execution in Sage by adding two new types of Haws:
an unerecuted action flaw and an ezecuting action flaw. Whenever a new operator is added to a plan, the corresponding flaw
indicating that the action is unexecuted is also added to the agenda. The ezecuting flaw is used to handle the fact that actjons
are not instantaneous and in some cases may take considerable time. A plan is not complete until all unezecuted and executing
flaws have been removed.

The choice of when to execute an action in a plan is important, since undoing an executed action may be costly or impossible.
An action cannot be executed until every precondition of the action has been both planned and achieved by executing the
preceding actions. Even after an action is executable, Sage delays execution as long as possible to avoid committing to a
partially constructed plan prematurely. Once an action has been executed, it is viewed as a commitment to the plan in which
the action occurs — the planner cannot consider any plans that are not refinements of the plan being executed. The idea is that
the planner should find the best complete plan before any action is executed. Then once execution is initiated, it resolves any
failed subplans or new goals before executing the next action. This means that the planner will never execute an action until
the corresponding plan is selected as the best available.

Since executing an action may take considerable time, the planner cannot simply execute an action and wait for the results.
Instead, Sage creates a subprocess that executes the action and notifies the planner once it has completed. In order to keep
track of the actions currently being executed, the corresponding unezecuted flaw is removed from the agenda and the erecuting
flaw is added. At any one time there may be a number of actions that are all executing simultaneously. On each cycle of the
planner, the system checks if any executing actions have completed. Once an action is completed, the ezecuting flaw is removed
from the agenda. If it completes successfully, the action is marked as completed. Other actions that depend on this action may
now be executable if all of the other preceding actions have also been executed. If an action fails, the failed portion of the plan
is removed and then replanned, as described in the next section.
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Figure 5.2: Planning for new goals

Sage’s top-level algorithm for tightly integrating planning and execution is summarized in Table 5.4. The planner starts
with an initial plan, where the goals are the open conditions. Initially, the set of current plans contains only this initial plan. It
repeats the algorithm until it produces a plan in which every action has been executed. The planner considers only refinements
of the current plans. Whenever an action is executed, an action terminates, or a new goal is added, the set of current plans is
replaced by a new set containing only this new plan. The first two conditions in this algorithm ensure that the planner finds a
plan with no open conditions or threats before it commits to a plan and initiates any actions.

This algorithm supports simultaneous planning and execution. Before the system initiates execution of any action, it
constructs an initially complete plan. However, once execution starts, an action could fail, a new goal could arise, or the system
may require additional information (sensing) to continue planning. In any of these cases, once the new open condition has been
added to the list of flaws, the system can augment the executing plan to achieve these conditions while it continues executing
any actions that have already been initiated. In the next section we describe these capabilities in more detail.

4 Advantages of Integrating Planning and Execution

Integrating the planning and execution allows the system to plan for new goals as they arrive, replan failed actions, and exploit
sensing operations, all while the system is executing other actions in a plan.
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Remove a plan from the set of current plans and apply the
first applicable condition:

o If there are any threats, resolve them by adding ad-
ditional constraints to the plan. Add the possible
refinements to the current plans.

o If there are any open conditions, add additional ac-
tions or ordering links to achieve them. Add the pos-
sible refinements to the current plans. (As described
in the next section, open conditions that contain run-
time variables for sensing will be postponed.)

o If any executing actions have completed:

— If the action completed successfully, record the
results and update the plan. If the plan is com-
plete, return the results. Otherwise, replace
the current plans with this new plan.

— If the action failed, remove the failed portion of
the plan, update the model to avoid generating
the same plan again, and replace the current
plans with this new plan.

o If there are any new goals to solve, add them to the
open conditions and replace the current plans with
this new plan.

o If any unexecuted actions are now executable, create
a process to execute them and replace the current
plans with this new plan.

Table 5.4: Algorithm for planning and execution

4.1 Planning for New Goals

Interleaving planning and execution allows the system to handle new goals while the system is in the midst of executing a plan
that achieves some other goals. This is important, since execution may require substantial amounts of time and it may be
impractical and inefficient to wait for one task to complete before starting the next task. In addition, it may not be possible to
treat the new goal as an independent task since it may compete with the executing plan for the same resources. The handling
of new goals is captured in the algorithm described in Table 5.4. When a new goal arises, the system adds this goal to the
currently executing plan and then refines that plan to solve the goal.

Consider an example where a new goal is given to the system while it is executing the plan in Figure 5.1. Assume that
the system has already executed some of the actions and is in the midst of executing others, as shown in Figure 5.2. When a
new goal arises to retrieve the description of the Long Beach seaport, the planner notices the pending goal on the next cycle
and then searches for appropriate additions to the currently executing plan to solve this goal. While the system is generating
this plan, the action in progress (shown by the action in the box with thick lines) continues to execute, since actions are run as
separate processes.

The resulting plan is shown in Figure 5.2. The advantage of planning this new goal in the context of the existing plan is
that shared work can be exploited and any potential resource conflicts are considered in the planning process. In this case, the
goal requires access to the geo database, which is already in use by the other executing query. As a result, the system uses
the geo database running on the sun-oracle server, since the other action that required this resource has already completed.
The separate top-level goals are treated as independent goals, so if a subplan fails it will not cause unrelated goals to fail. In
addition, as soon as any top-level goal is complete, the results are sent to the calling process. This allows the planner to run
continuously and return results as soon as they are obtained rather than waiting for a plan to complete.

B

4.2 Replanning Failed Actions

Integrating planning and execution allows the system to gracefully handle action failures and replanning. Since the planner may
have expended considerable effort in executing a plan so far, we want to avoid throwing out the entire plan and starting from
scratch when an action fails. Instead, the planner should replan the failed portion of the plan, while maintaining as much of the
executing plan as possible. This is currently supported by requiring the designer of a domain to define a set of domain-specific
failure handlers. When a failure occurs, the failure handler is called with the action that failed and the type of failure, and
the failure handler is expected to remove the failed portion of the plan and update the model to avoid the same failure when
the failed actions are replanned. This replanning can be performed while other unaffected actions continue to execute. A more
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Figure 5.3: Replanning a failed plan

complete replanning capability could be incorporated by using the approach developed in the Systematic Plan Adaptor (SPA)
[32], which systematically searches the space of plan modifications.

In the information gathering domain, the ability to replan upon failure can be exploited to handle query failures by
redirecting a query to a different information source. An execution failure may occur because a database or network is down.
In this case the failure handler would remove the actions for retrieving the data from a specific information source and would
mark the information source as unavailable to avoid generating the same plan. The planner would then attempt to replan the
query; if another information source is available it would generate an alternative plan.

An example of a failed action that can be replanned is shown in Figure 5.3. The actions in the shaded boxes are the failed
actions and the actions above the failed ones are the replanned actions. Since the replanned move action requires the same
resource as the action currently being executed, an ordering constraint is added between these two actions. This constraint
prevents the replanned move action from being executed until this other action completes.

4.3 Sensing to Plan

Legend
Planned AR Completed
Move @ [I—

From: geo@hp-oracle - l l Executin

To: output@sims = Szgﬁtrcgf)g:g 9

Data: port-name .

channel-depth > 24
Use—Sensed-Info

(=== mmmmmmmme e oml ] L4 max-draft=24 |
1 ¥
Move b eemmmmeeeee-- }| | ememmmmm e . .’
1 From: assets@sun~oracle: __} Select-Source _ 'Bind-Result Lol
1 To: local@sims it Source: Assets!” =¥ max-draft=24 !
! Data: max—draft 1 R e e R e

Figure 5.4: Exploiting sensing actions

Integrating planning and execution allows the system to interleave sensing actions with the planning. Earlier work on sensing
in planning {5, 21] proposed the idea of incorporating run-time variables in the planner to allow the planner to reason about
the sensed information. Run-time variables appear in the effects of operators and essentially serve as place holders for the value
or values returned by the action at the point it is executed. These variables are useful because the result can be incorporated
and used in other parts of the plan. An issue that arises in the use of run-time variables is that until desired information is
available, the planning may have to be postponed or a plan with all possible contingencies will have to be produced in order
to deal with the possible returned values. Sage supports run-time variables and delays working on any open condition that
involves such a variable. However, unlike previous planners, Sage can begin execution of other actions while it is waiting for
the sensed information and then continue planning while these actions continue to execute.
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For information gathering, there are two important uses of run-time variables. First, the run-time variables can be used
to retrieve information from one source and that information is then used to formulate queries to another source. Second,
the run-time variables also can be used to retrieve information which is then used in the selection of the most appropriate
information sources. We have already implemented the first use, which is described below, and we investigate the second in
[42].

The capability for gathering information to use in the formulation of another query can be added to the system by adding
two more operators to the domain, shown in Table 5.5. The first operator is simply an action to execute a query in the local
system and bind the result to “lresult”. As in UWL, run-time variables are annotated with an exclamation mark. The only
precondition of this operator is that the information is available in the local system and the only effect is that the data is bound
to the result. Note that the system will have to generate a subplan and execute it in order to get the information into the local
system.

(define (operator bind-result)
:parameters (7query !result)
:precondition (available local sims ?7query)
teffect (sensed 7query 'result))

(define (operator use-sensed-info)
:parameters (7source 7host 7query
?mod-query 7sub-query 7result)
:precondition
(:and (sensed 7sub-query 7result)
(available 7source 7host ?7mod-query)
(gather-data 7query 7mod-query
?sub-query ?result))
:effect (available ?source ?host ?query))

Table 5.5: Operators for sensing

The second operator, called use-sensed-info, retrieves information and uses it in the formulation of another query. The
heart of this operator is the gather-data precondition, which is a function that determines whether a query can be decomposed
such that some of the information can be retrieved and incorporated directly into another query. If so, then it decomposes the
original query into a modified query and a sub-query, which will get executed first to return an answer. The result will then be
inserted directly into the modified query through the run-time binding.

Consider the example query described in the previous sections. Instead of executing two parallel queries, the system can
first gather the informatijon on the ship draft and incorporate that information directly into the second query, as shown in
Figure 5.4. In this plan the binding for the “max-draft,” is incorporated directly into the query against the geo database.
While the two queries must then be done sequentially, it will greatly reduce the amount of intermediate data that needs to be
retrieved from the second query. Also, there will be no local processing, so the result can be sent directly to the output.

5 Related Work

There are a variety of systems that have tightly integrated planning with some combination of execution, sensing, and replanning.
There is work on reactive planning (e.g., {24, 11}), which emphasizes the ability to react to unexpected situations rather than
assume that a plan will usually work. This view is appropriate for some domains, such as robot planning, but not in domains such
as information gathering where the cost of execution will usually be much higher than the cost of reasoning about actions. In
a partial-order planning framework, Ambros-Ingerson [5] developed an integrated planning, execution, and monitoring system
called IPEM and introduced the idea of run-time variables for sensing. Olawsky and Gini [55] focused on the tradeoffs and
strategies in choosing when to sense and when to plan. Etzioni et al.[21] developed a language for representing incomplete
information and Etzioni et al.[20] built an integrated system for planning, execution, and sensing called XII that can represent
and reason about locally complete information. We have built on many of the ideas from the earlier work within the partial-
order planning paradigm and extended them to support simultaneous planning and execution and build an integrated system
for information gathering.

The other aspect to this work is the application of the planner to the problem of information gathering. The x11 planner
[20], which is used in the Unix Softbot [22], also supports execution and sensing for information gathering. Compared to
Sage, the Softbot reasons about the information at a different level of granularity. Instead of representing general actions
for manipulating data, each operator corresponds to a Unix command. The advantage of their approach is that it provides
finer-grained control and reasoning of the information. The disadvantage is that it would be impractical to efficiently reason
about and manipulate large amounts of information. Information gathering is also similar to conventional query processing in
databases. These systems generate a query access plan and then execute it [34]. There is no choice of which information source
is used and no capability for interleaving the planning and execution, performing sensing operations, replanning due to failures,
or handling additional goals.
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6 Discussion

This chapter presented a planning system, called Sage, which tightly integrates planning and execution, runs continuously
and handles new goals as they arrive, performs sensing actions, and recovers from failures that arise, all while continuing to
execute actions already in progress. The contributions of this work are twofold. First, we extended the previous work by tightly
integrating these components and adding the capability to execute actions simultaneously with the planning, replanning, and
sensing. Second, we demonstrated that the resulting planner can be effectively applied to the problem of information gathering
from distributed and heterogeneous information sources.

In this work we started with a real-world planning application and identified the issues that had to be addressed to solve
this problem. While there is a significant amount of previous work on planning that we could build on; the emphasis and
assumptions in previous work do not closely match the problems that arise in this domain. For example, in terms of generating
plans, the interactions between actions do arise, but they are not the dominant problem. Issues that are important in this
domain are finding high quality plans, exploiting parallelism in the plans, and planning and executing simultaneously to support
planning for new goals, replanning and sensing. In order to put all of this work together and turn jt into a practical planning
system, the resulting planner makes some simplifying assumptions that may not hold in other domains. However, the basic
architecture is quite general and has been demonstrated in a real-world application.

Sage serves as the underlying query planner for the siMs information mediator [7,41]. The goal of SIMS is to provide flexible
and efficient access to large numbers of information sources. We have implemented the planning, execution, replanning, and
sensing as described in this chapter. The current system has been used in the domains of logistics planning and trauma care
and provides access to data stored in a variety of systems that are distributed at various sites.
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Chapter 6

Model Construction with Key
Identification

1 Introduction

A conceptual model of a database is a specification of objects, attributes, and their relationships in the database.
Such a model is not only important for understanding the given data but also critical for applications such as reverse
engineering and information integration. However, obtaining a conceptual model from a legacy database is difficult
task. This is because legacy databases often have incomplete schema, noisy data, and missing information about
primary keys and foreign keys.

Although model construction with key identification is an important problem, it has not received much attention
in the past and its complexity has often been underestimated. There are at least two mis-concepts in this regard.
First, because keys and functional dependencies are very closely related, it is often believed that keys could be found
as by-products of functional dependencies. This belief has ignored the fact that legacy databases have large sizes and
finding all functional dependencies is not only undesirable but also impractical. Second, it is believed that a simple
brute force search for all attributes that have unique values would be sufficient. This approach forgot the fact that in
a legacy database, you either find too many such “unique attributes” due to the nature of the data, or you find too
few such attributes due to the noise in the data.

Furthermore, key identification must be put into context in order to obtain practical solutions. By exploiting the
relation between key identification and model construction, we have developed an approach that can identify
primary keys and foreign keys with a high accuracy for the construction of a conceptual model. The main idea is to
use the constraints between keys, foreign keys, and the model construction to filter out spurious key information and
guide the search toward fruitful directions. This constraint-based approach is also efficient and practical. For the
three large legacy databases that have been tested, this approach has obtained comprehensive entity-relationship
models in several hours where constructing such models based on conventional database tools may require several
man-weeks of work.

In the rest of the chapter, Section 2 highlights the related work, Section 3 provides the necessary definitions,
Section 4 describes the details of the constraint-based key identification for model construction and an algorithm
called MCKI that implements the idea, Section 5 presents the experimental results of applying MCKI to three large
legacy databases, and finally Section 6 concludes the chapter with some future work.

2 Related Work

Although there is little work on model construction with key identification, there is a large body of work on model
construction with given key information. For example, [CBS94,C95] describes an approach for extracting an
extended entity-relationship (EER) model from a relational database that assumes consistent key names, error-free
key values, and primary keys. [MMO90] provides an algorithm to generate EER schemas from relational schemas that
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must consist of relation-schemes, key dependencies, and key-based inclusion dependencies. Earlier approaches on
schema translation such as [DA88], [BM89] and [SK92] are also related, although these approaches do not consider
data at all.

In KDD research community, model construction has received some limited attention. [MK91] applies an ID3-
style algorithm to analyze frame-based data structures in the KATE system. [RKK95] proposes a method of
analyzing individual relations and combining the results across databases based on primary and foreign keys.
[MR96] presents a reverse engineering method for inferring the background domain knowledge from a database by
analyzing the dependencies. [MR96] describes model construction approach by searching for unique or near-unique
attributes as keys and then grouping relevant attributes to form complex objects. However, no application to real
databases has been reported yet.

3 Basic Definitions

Let R be the schema of a relational database, and R; be a relation schema of R. In this chapter, we assume R satisfies
2NF, that means all attributes are atomic and there is no partial dependency in the keys of any R;. A relational
database can be defined as a tuple (R, F, I), where F is a set of functional dependencies, and I a set of inclusion
dependencies, defined as follows:

A functional dependency over a relational schema Ri(4;;, 4iz, - , Aim) is an expression R;: X - Y, where X and Y
are subsets of R;. If r; is a relation over R;, then R;: X — Y holds in r; if and only if for any tuples t, t' in r;, if t{X] =
t'[X], then t[Y] = t[Y]. Two particular types of functional dependencies are of interesting: (1) If Ri: X — R;, where
X is a subset of R;, then X is a super key of R;; (2) Since R satisfies 2NF, there exists a primary key that uniquely
defines a relation r; of every R;.

An inclusion dependency over R is an expression Ri[X] — Rj[Y], where R; and R; are relation schema of R, and
X and Y are equal-length sequences of attributes of R; and R;, respectively. An inclusion dependency specifies a
reference integrity constraint of R;. For an inclusion dependency Ri[X] — Rj[Y], if Y is the super key of R;, this
dependency is called key based. Moreover, if Y is a primary key of R;, the dependency is called primary key based,
and X is called a foreign key of R;.

In this chapter, the mode! to be constructed is an entity-relationship model. To do so, each relation R; will be
classified as either an entity relation (to be converted into entity) or a relationship relation (to be converted into a
relationship). In general, a relation’s classification is based on the collective information about its primary keys and
related foreign keys.

4 Constraint-Based Model Construction with Key
Identification

The process for mode! construction with key identification is as follows:

Identify candidate keys for each relation R; in R;

Identify candidate foreign keys based on the candidate keys found in 1;

Eliminate those candidate keys that are not referred by any of the foreign keys found in 2;
Identify entity relations based on the candidate keys and foreign keys;

Eliminate those foreign keys that do not point to any entity relations;

Classify each relation as either an entity relation or a relationship relation;

N AW

Construct an ER model based on the classified relations.

Notice that each step in this process is either gathering information, or eliminating spurious information based on
some constraints that imposed by the gathered information. For example, after candidate keys are found in step 1,
they are used to constraint the search for foreign keys in step 2. After foreign keys are found in step 2, they are used
to eliminate the spurious candidate keys (those that are not referred by any foreign keys) in step 3, and so on. The
details of each step are described as follows.
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4.1. Identify Candidate Keys

To identify a set of candidate keys for a given relation Ri(4jy, ..., 4in), we check the values in a subset X of R;, and
calculate the likelihood of X being a key as follows:

p(X) = (the number of unique tuples in X)/(the number of tuples in R;).

We then choose those X that have value p(X)>g, where g is a predetermined threshold. For example, g can be set
as such that every relation should have at least one candidate key. To constraint the search, we also limit the length
of X to be less than 5. (This number is determined empirically for we believe that the probability of having a
compound key having more than 5 attributes is very low.) The result of this step is a set of candidate key for every
relation. As one may expect, more than one candidate key may be found for a relation and not all of them are
genuine. For example, an attribute with the type of real number is likely to have many unique values, but it is not a
key. On the hand, since legacy databases may contain much noisy data, some relations may not have attributes that
qualify as keys at all. Such relations will be reported to the user as special cases.

4.2. Identify Candidate Foreign Keys

Given the candidate keys found in the last step, the system is then search for inclusion dependency Ri[X] — Rj[Y],
where Y is a candidate key for R, in order to find candidate foreign key X for R;. Notice that the search for inclusion
dependency is not blind but purposely directed to candidate keys (i.e., Y must be a candidate key). In contrast to
other approaches, this constraint has contributed greatly to the efficiency of the entire search process.

4.3. Eliminate Spurious Candidate Keys

In this step, the candidate foreign keys found in the last step are used as constraints to eliminate spurious candidate
keys. The idea is as follows. If both X and Y are candidate keys for a relation R;, and X is referred by some foreign
keys while Y is not, then Y will be eliminated from the set of candidate keys for R;. The justification is that if a
candidate key is genuine, then it should be referred to by other relations when such references exist. When more
than one candidate keys are referred by foreign keys, then the one that is referred most frequently will be select as
the primary key for the relation.

4.4. Identify Entity Relations

At this stage, enough information has been accumulated to allow classification of entity relations. In particular, a
relation R; is classified as an entity relation if its primary key does not contain any foreign keys. We omit the
justification but readers can found them in [CBS94].

4.5. Eliminate Spurious Foreign Keys

Once entity relations are identified, they can be used to eliminating spurious foreign keys. The idea is simple, if a
candidate foreign key does not point to any of the entity relations, then it does not contribute to the final construction
of ER model, and thus can be removed from the set of possible foreign keys. After this step, we have identified
sufficient (and possibly necessary) information for properly classifying relationship relations in the next step.

4.6. Classify Relationship Relations and Other Entity Relations

In this step, all the relations that have identified primary key and foreign keys will be classified. The decision
whether a relation Ri should be classified as an entity or a relationship is based on the interdependency between its
primary key and foreign keys, as follows. ‘

If Ri has only one foreign key, and this foreign key is contained in the primary key, then classify Ri as an entity
relation;

If Ri has two foreign keys and they form the primary key of Ri, then classify Ri as a relationship relation. This
relationship will link the two entity relations pointed to by the foreign keys;

If Ri has two foreign keys and one is in the primary key and the other is not, then classify Ri as an entity relation.
This entity will have two relationships through the foreign keys.

If Ri has n (n>2) foreign keys, and at least one of them is contained in the primary key, then classify Ri as a n-ary
relationship relation, with links to the n entity relations pointed to by the foreign keys. To illustrate the idea,
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consider the following divorce case,

MAN(SSN, Name, Bdate),
WOMAN(SSN, Name, Bdate),
LAWYER(SSN, Name, Bdate),
DIVORCE(ManSSN, WomanSSN, LawyerSSN, Date)
The primary key of DIVORCE is ManSSN (or WomanSSN). It has three foreign keys reference to MAN,
WOMAN, and LAWYER respectively. We can convert DIVORCE to a 3-ary relationship among the three entities.

4.7. Construct an ER Model Based on The Classified Relations

With all the relations classified, this step simply constructs a ER model according to the classified relations. All
entity relations will be converted into entities, and their names and attributes (except the foreign keys) will also be
carried over. All the relationship relations will be converted into relationship with foreign keys are the pointers to
the appropriate entities. They will use the same name, and all their attributes will be made as attributes of the
relationship.

S Experimentation

To evaluate this approach, we have implemented the above algorithm in a system called MCKI (Model Construction
with Key Identification), and tested it on three real databases: ALPI, CVI and GITI8]I, collected from some daily-
used logistics applications. All of them have the typical characteristics of legacy database: (1) They contain large
amounts of data. ALPI has 67 tables, with maximum 60 attributes and 515,668 rows. CVI has 104 tables, with
maximum 38 attributes and 99,264 rows. GITISI has 48 tables, with maximum 20 attributes and 1,480,445 rows. )
They miss very important schema information. There is no specification for primary key, foreign key, and domain
experts are almost impossible to access. (3) They contain a lot of noisy data. For example, most tables in these
databases have spurious candidate keys (set of attributes that have unique values). In other word, these databases are
not even in 2NF on the first glance.

MCKI has been tested on all three databases. Due to space limitation in this chapter, we will only report the
result in ALPIL

5.1.1.1 Table 1. Examples of Candidate Keys found in ALPI
#Table8:CIF_FAILURE_FACTOR: numRows=808, numColumns=7, keys=1
EI_LIN, PART_NSN : 1.000000
#Table9:COLUMN_ATTRIBUTES: numRows=120, numColumns=4, keys=3
TABLE_NAME, COLUMN_NAME : 0.958333
TABLE_NAME, ATTRIBUTE_NAME : 1.000000
TABLE_NAME, ATTRIBUTE_VALUE : 1.000000
#Table10:DATABASE_HISTORY: numRows=36, numColumns=10, keys=5
TABLENAME : 0.916667
TABLENAME, USERNAME : 0.916667
TABLENAME, TIMESTAMP : 1.000000
TABLENAME, MOD_TYPE : 0.916667
TABLENAME, DATAFILE : 1.000000
#Table]11:DLA_STOCK_REPORT_l: numRows=51784, numColumns=7, keys=1
NSN, RIC : 0.703808
#Table36:LOGAD_TABLES: numRows=120, numColumns=9, keys=2
TABLE_NAME : 0.983471
PRETTY_NAME : 1.000000
#Table41:MP_STOCK_REPORT_1: numRows=64891, numColumns=1 1, keys=1
NSN, STATION_CODE, : 1.000000
#Table43:NSN_DESCRIPTION: numRows=25716, numColumns=60, keys=2
NIIN, : 1.000000
NSN, : 1.000000
#Table58:TAV_CODES: numRows=752, numColumns=4, keys=5
VALUE 1, :0.918883
CODE_TYPE, CODE, : 1.000000
CODE_TYPE, VALUE_}, : 0.928191
CODE, VALUE _1, : 1.000000
VALUE 1, VALUE 2,:0.953457
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#Table61:TAV_STOCK_REPORT_1: numRows=4926, numColumns=11, keys=1
NSN, UIC_RIC, : 0.944580

#Table62:TAV_STOCK_REPORT_2: numRows=1532, numColumns=11, keys=1
NSN, UIC_RIC, : 0.843342

#Table63:TAV_STOCK_REPORT_3: numRows=513497, numColumns=11, keys=1
NSN, UIC_RIC, : 0.947355

#Table64: TAV_STOCK_REPORT_4: numRows=515668, numColumns=11, keys=1
NSN, UIC_RIC, : 0.962005

As we can see in Table 1, many tables in this database has more than one candidate keys, and due to the noisy
data, some tables do not have candidate keys at all. Table 2 shows some examples of candidate foreign keys found
by MCKI. As we can see there, candidate foreign keys in this database are very well organized. Most of them point
to the same candidate key if they refer to the same table. Using these candidate foreign keys, primary keys and
spurious candidate keys can easily be identified. For example, in Table 36, although both PRETTY_NAME and
TABLE_NAME are qualified as keys, TABLE_NAME is selected as the primary key (it has 8 foreign key references)
while PRETTY_NAME is eliminated (it has no foreign key reference), even if it has a higher value of uniqueness than
TABLE_NAME (1.0 vs.0.983477).

Table 2. Examples of candidate foreign keys found in ALPI

#Table10:DATABASE_HISTORY: numRows=36, numColumns=10, keys=35, foreigns=1
(TABLENAME): LOGAD_TABLE_SEGMENTS(TABLE_NAME);
(TABLENAME,USERNAME): No FKEY REFERENCE!
(TABLENAME,TIMESTAMP): No FKEY REFERENCE!
(TABLENAME,MOD_TYPE): No FKEY REFERENCE!

(TABLENAME DATAFILE): No FKEY REFERENCE!

#Table22:GLAD_META_JOIN_TO: numRows=23, numColumns=4, keys=4, foreigns=1
(JOIN_NAME): GLAD_META_JOIN_FROM(JOIN_NAME);
(JOIN_NAME,TABLE_NAME): No FKEY REFERENCE!
(JOIN_NAME,COLUMN_NAME): No FKEY REFERENCE!
(TABLE_NAME,COLUMN_NAME): No FKEY REFERENCE!

#Table29:ITEM_GROUP_2: numRows=4, numColumns=1, keys=1, foreigns=1
(NSN): CIF_FAILURE_FACTOR(EI_NSN},

#Table32:LOGAD_COLUMNS: numRows=1494, numColumns=16, keys=4, foreigns=1
(TABLE_NAME,COLUMN_NAME): GLAD_META_JOIN_FROM(TABLE_NAME,COLUMN_NAME);
(TABLE_NAME,PRETTY_NAME): No FKEY REFERENCE!
(TABLE_NAME,SHORT_NAME): No FKEY REFERENCE!
(TABLE_NAME DOCUMENTATION): No FKEY REFERENCE!

#Table36:LOGAD_TABLES: numRows=121, numColumns=9, keys=2, foreigns=8
(TABLE_NAME): DATABASE_HISTORY(TABLENAME),

GLAD_META_JOIN_FROM(TABLE_NAME),
GLAD_META_PRETTY_NAMES(TABLE_NAME),
LOGAD_CODES(TABLE_NAME),
LOGAD_COLUMNS(TABLE_NAME);
LOGAD_INDICES(TABLE_NAME),
LOGAD_POST_LOAD_PROCESSING(TABLE_NAME),
LOGAD_TABLE_SEGMENTS(TABLE_NAME);

(PRETTY_NAME): No FKEY REFERENCE!

#Table43:NSN_DESCRIPTION: numRows=25716, numColumns=60, keys=2, foreigns=3
(NIIN): No FKEY REFERENCE!

(NSN): CIF_FAILURE_FACTOR(EI_NSN),
TAV_STOCK_REPORT_I(NSN);
TAV_STOCK_REPORT_2(NSN);

#Table51:RIC: numRows=5110, numColumns=9, keys=1, foreigns=1
(RIC): CIF_FAILURE_FACTOR(SOURCE_OF_SUPPLY),

#Table59:TAV_NSN_TEMP: numRows=3327, numColumns=1, keys=1, foreigns=5
(NSN): CIF_FAILURE_FACTOR(EI_NSN),

TAV_STOCK_REPORT_I(NSN);
TAV_STOCK_REPORT_2(NSN),
TAV_STOCK_REPORT_3(NSN),
TAV_STOCK_REPORT_4(NSN),

#Table66:WORLD_DESCRIPTION: numRows=1, numColumns=2, keys=2, foreigns=2

(WORLD_ID): DATABASE_HISTORY(WORLD_ID);
DLA_STOCK_REPORT_1(WORLD_ID),

(DESCRIPTION): No FKEY REFERENCE!

With the primary keys and foreign keys found, MCKI constructs an ER mode! for the ALPI database. The model

contains 67 entities and 25 relationships. The entire process takes about 3 hours.
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6 Conclusion

This chapter presents a method for model construction with key identification in legacy databases. Compared to
most existing approach, this method is data-driven and constraint-based. It does not assume that the primary keys
and the foreign keys are given. Instead, the system discovers this information by analyzing the data. One innovation
of this approach is that the search for critical information is not brute force, but exploiting constraints that are
imposed on the analyzed results. The method has been tested on some very large legacy database and the results are
promising.
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Abstract

SIMS provides intelligent access to heterogeneous, distributed information sources, while insulating
human users and application programs from the need to be aware of the location of the sources, their
query languages, organization, size, etc.

This manual explains how to bring up a SIMS information server in a new application domain.
After providing a short overview of relevant features of the SIMS system, it describes the modeling and
programming work that has to be performed to support the extension of SIMS to a given collection of
information sources in the domain. To aid a user inexperienced with the technological infrastructure
underlying SIMS, the manual contains examples structured as a tutorial that can be followed to actually
produce a working SIMS system.

*The research reported here was supported in part by Rome Laboratory of the Air Force Systems Command and the Defense
Advanced Research Projects Agency under Contracts Number F30602-94-C-0210, F30602-97-2-0352, and F30602-97-2-0238 and
in part by a grant from Computing Devices International. The views and conclusions contained in this paper are those of the
authors and should not be interpreted as representing the official opinion or policy of RL, DARPA, the U.S. Government, or
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1 Introduction

The overall goal of the SIMS project is to provide integrated access to information distributed over multiple,
heterogeneous sources: databases, knowledge bases, flat files, Web pages, programs, etc. In providing such
access, SIMS tries to insulate human users and application programs from the need to be aware of the
location of sources and distribution of queried data over them, individual source query languages, their
organization, data model, size, and so forth. The processing of user requests should be robust, capable of
recovery from execution-time failures and able to handle and/or report inconsistency and incompleteness of
data sources. At the same time SIMS has the goal of making the process of incorporating new sources as
simple and automatic as possible.

The SIMS approach to this integration problem has been based largely on research in Artificial Intelli-
gence; primarily in the areas of knowledge representation, planning, and machine learning. A model of the
application domain is created, using a knowledge representation system to establish a fixed vocabulary for
describing objects in the domain, their attributes and relationships among them. Using this vocabulary, a
description is created for each information source. Each description indicates the data-model used by the
source, the query language, network location, size estimates, etc., and describes the contents of its fields in
relation to the domain model. SIMS’ descriptions of different information sources are independent of each
other, greatly easing the process of extending the system. Some of the modeling is aided by source analysis
software developed as part of the SIMS effort.

Queries to SIMS are written in a high-level language (Loom or a subset of SQL) using the terminology
of the domain model — independent of the specifics of the information sources. Queries need not contain
information indicating which sources are relevant to their execution or where they are located. Queries do
not need to state how information present in different sources should be joined or otherwise combined or
manipulated.

SIMS uses a planner to determine how to identify and combine the data necessary to process a query.
In a pre-processing stage, all data sources possibly relevant to the query are identified. The planner then
selects a set of sources that contain the queried information and generates an initial plan for the query.
This plan is repeatedly refined and optimized until it meets given performance criteria. The plan itself
includes, naturally, sub-queries to appropriate information sources, specification of locations for processing
intermediate data, and parallel branches when appropriate. The SIMS system then executes the plan. The
plan’s execution is monitored and replanning is initiated if its performance meets with difficulties such as
unexpectedly unavailable sources. It is also possible for the plan to include explicit replanning steps, after
reaching a state where more is known about the circumstances of plan execution.

Changes to information sources are handled by changing source descriptions only. The changes will
automatically be considered by the SIMS planner in producing future plans that utilize information from
the modified sources. This greatly facilitates extensibility.

The rest of this section presents an overview of SIMS and its architecture. In Section 2 we show the
format of the queries that a user would input to SIMS and the output that should be expected. Then we
consider in more detail the specification of the domain model, in Section 3, and how information sources are
described to the system, in Section 4. Section 5 gives a brief introduction on how to construct a wrapper
for a new information source and how to communicate with the wrapper. Section 6 explains how to run
SIMS both through its graphical user interface and its functional interface. Section 7 describes how to test
and debug a new SIMS application. Section 8 presents the installation and system requirements. Finally,
in Section 9 we show the code that would implement the example that is discussed throughout the manual.
Section 10 contains a reading list of relevant papers.

1.1 Architecture and Background

A visual representation of the components of SIMS is provided in Figure 1.

SIMS addresses the problems that arise when one tries to provide a user familiar only with the general
domain with access to a system composed of numerous separate data- and knowledge-bases.

Specifically, SIMS does the following:

* Modeling: It provides a consistent way of describing information sources to the system, so that data
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Figure 1: SIMS Overview Diagram.

in them is accessible to it.
« Information Source Selection: Given a query, it

— Determines which classes of information will be relevant to answering the query.

— Quickly, using some information generated during an earlier preprocessing stage, generates a list
of all combinations of sources that contain all information required for a query.

e Initial Query-Plan Formation: It creates an initial plan, a sequence of subqueries and other forms
of data-manipulation that when executed will yield the desired information. This initial plan does not
necessarily satisfy any optimization requirements.

¢ Query-Plan Rewriting/Optimization: By successively applying rewriting rules that preserve the
correctness of the plan, it gradually improves the plans efficiency. This process continues until no
further rewriting is possibly, or until the allotted time runs out.

o Semi-Automated Modeling: By querying databases and other information sources and analyz-
ing the returned information, it discovers semantic rules characterizing their contents. This learned
knowledge is used to help create SIMS’ information source descriptions.

e Execution: It executes the reformulated query plan; establishing network connections with the appro-
priate information sources, transmitting queries to them and obtaining the results for further process-
ing. During the execution process SIMS may detect that certain information sources are not available,
or respond erroneously. In such cases, the relevant portion of the query plan will be replanned. In
addition, certain plans will contain steps that require replanning some plan branch some time into the
execution phase, after more information is known.

Each information source is accessed through a wrapper, a module that can translate from a description

of a set of data in SIMS’ internal representation language (Loom) into a query for that data that is then
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submitted to the source. The wrapper also handles communication with the information source and takes
the data returned by it and sends it on to SIMS in the form SIMS expects.

1.2 Information Sources Supported

In order for SIMS to support an information source it must have a description of the source, and there must
exist a wrapper for that type of source. While each information source needs to be described individually,
only one wrapper is required for any type of information source.

Wrappers for Loom knowledge bases and MUMPS-based network databases have been written for SIMS.
In addition, through an “ODBC wrapper” SIMS uses ODBC to interact with all ODBC-enabled databases.
This includes Oracle, Sybase, Informix, Ingres, and many others. To add a new database of any of these types
requires, therefore, only to create an information source description for it. In order to add an information
source of a new type one would have to obtain, or write, a new wrapper for it as well. We are currently
working on wrappers for certain object oriented databases. We also have an ongoing associated effort
(Ariadne) that includes work on semi-automatic generation of wrappers for HTML pages.
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2 The SIMS Query Language

Currently, SIMS only supports commands for retrieving data. Specifically, SIMS takes a retrieval query as
input and returns the data satisfying the constraints specified in the query. The output format of SIMS is a
tuple of constant(s) or a list of tuples of constant(s). A retrieval query can be expressed in a LOOM syntax
or a SQL syntax. The following two sections discuss these two languages in detail.

2.1 LOOM Syntax

Loom serves as the knowledge representation system that SIMS uses to describe the domain model and the
contents of the information sources. In addition, Loom is used to define a knowledge base that itself serves
as an information source to SIMS. Loom provides both a language and an environment for constructing
intelligent applications. It combines features of both frame-based and semantic network languages, and
provides some reasoning facilities.

The BNF syntax for the SIMS query language is shown in Figure 2.

<query> ::i= (sims-retrieve <variable> | ({<variable>}*t) <query-expr>)

<query-expr> u= ({:and | :or} {<query-expr>}*)

<clause> 1= <concept-exp> | <relation-exp> | <assignment-exp> | <comparison-exp>
<concept-exp> :i= (<concept-name> <variable>)

<relation-exp> = (<relation—name> {<bound-variable>} {<term>})

<assignment-exp> :i= (:= <unbound-variable> {<arith-exp> | <set-exp>})

<set-exp> u= ({<constant>}")

<comparison—exp> :i= <member-comparison> | <arithmetic-comparison>
<member-comparison> ::= (member <bound-variable> <set-exp>))
<arithmetic-comparison> ::= (<comparison-op> {<arith-exp>} {<arith-exp>})
<arith-exp> ::= <number> | <bound-variable> | (<arith-op> <arith-exp> <arith-exp>)
<arith-op> u= + |- | * |/

<comparison-op> = = | > | < |>= |<= | !=

<concept-name> :i= <symbol>

<relation-name> ::= <symbol>

<term> ::= <comstant> | <variable>

<variable> ::= <bound-variable> | <unbound-variable>
<bound-variable> = 7<symbol>

<unbound-variable> :i:= ?<symbol>

<constant> ::= <number> | <string>

Figure 2: BNF for the SIMS Query Language in LOOM Syntax

The following are the basic forms of a SIMS query:
(sims-retrieve 7v <query-expr>)
(sims-retrieve (?v; ... Tv,) <query-expr>)

The variables listed after the sims-retrieve command, 7v and ?v; ...7vn, are considered output vari-
ables. This means that the values of these variables are returned as the output of the query. Al] variables
must be named with the prefix ‘?’. The query expression is composed of clauses and constructors. Clauses
determine the values of the variables by binding the variables to specific types of values. In other words,
clauses constrain the values of the variables. There are four types of clauses supported by the SIMS language
which will be described in the next section. Clauses can be grouped by constructors into queries. Currently,
the constructors provided are :and and :or.

A SIMS query returns as output a list of instantiations of the output variables which satisfy the bindings
of the clauses in the query body. The following shows an example of output from a SIMS query.

(sims-retrieve (7name) (:and (American-Large-Seaport ?seaport)
(port-name ?seaport 7name)))
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==> (("Long Beach") ("New York") ("Norfolk") ...)
In this query the output variable ?name is bound to the values of the role port-name of American-Large-Seaport.

2.1.1 Clauses

Clauses are expressions that constrain the values which can be bound to a variable. A clause is satisfied
when there exists values that satisfy the constraints on the variables in that clause. The following are the
four types of clauses:

e Concept expressions:
(<concept-name> <variable>)

where <concept-name>> is the name of a concept, the variable is bound to an instance of the concept
<concept-name>. An example of a concept expression is:
(Seaport ?seaport)

This constrains the variable ?seaport to only the instances of the concept Seaport. Variables in
concept expressions cannot be returned by the system.

o Relation expressions:
(<relation-name> <bound-variable> <term>)

where <relation-name> is the name of a relation, <bound-variable> is a variable from a concept
expression while <term> can be either a variable or a constant (a number or a string). The first clause
states that there is a binary relation <relation-name> between <bound-variable> and <term>. The
following are examples of this type of relation expression:

(port-name 7seaport ?7name)

(seaport-country~-code ?portCountryCode ’A123)

The first expression is only satisfied if the value for ?name is the port-name of ?seaport. The second
expression is only satisfied if ?4123 is the seaport-country-code of ?portCountryCode.

¢ Assignment expressions:
(:= <unbound-variable> <arith-expr>)

This clause assigns to the unbound variable the computed result of <arith-expr>.

For the following example, suppose we have a concept Seaport and its relations to its name (port-name)
and to its number of cranes code (cranes). The following query will return a list of the names of a
pair of seaports that have more than five cranes in total.
(sims-retrieve (?portnamel ?portname2)
(:and (Seaport ?seaporti)
(Seaport ?seaport2)
(port-name ?seaporti ?portnamel)
(port-name ?seaport2 ?portname2)
(cranes ?seaportl ?cranesi)
(cranes ?seaport2 ?7cranes2)
(:= 7totalcranes (+ ?cranesi ?cranes2))
(> ?totalcranes 5)))
==> (("Long Beach" "Norfolk")
("New York" "San Diego")

o Comparison expressions are used to express a constraint on variables. The following are forms of
member comparisons:
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(member <bound-variable> <set-exp>)

where a <set-exp> is defined as a set of constants. This clause is satisfied if the variable is bound to
one of the constants (i.e., strings or numbers) in the <set-exp>.

The following are examples of member comparisons:
(member ?name ("Long Beach" "San Diego" "Newport Beach"))

This expression is only satisfied if the value for 7name matches one of the three strings in the set.

Another type of comparison expression uses the arithmetic comparison operators: =, >, <, >=, <=,
I=

(<comparison-op> <arith-expr> <arith-expr>)

The following are examples of the arithmetic comparison:
(> ?cr B)
(= ?depth 120)

The first example checks that the the number of cranes (7cr) of a seaport is greater than five. The

second example verifies the channel depth (?depth) of a seaport is equal to 120.

2.1.2 Query Expression Constructors
This section describes the two expression constructors supported by SIMS.
(:and expr; ...exprp) — CONJUNCTION

This returns the values for which each of the expressions ezpr; is satisfied.

Example: (:and (Seaport 7x) (port-name ?x ?y))
This expression is satisfied if ?x is a Seaport and 7y is the name of that seaport.

(:or expr; ...exprp,) — DISJUNCTION

This returns the values for which at least one of the expressions ezpr; is satisfied.
Example: (:or (Small-Seaport 7x) (American-Large-Seaport ?x))

This expression is satisfied if ?x is either a Small-Seaport or an American-Large-Seaport.

2.2 SQL Syntax

SIMS also accommodates queries written in a subset of SQL syntax. A query in SQL syntax is first translated
into the native Loom query language and then processed by SIMS internally. This SQL-syntax front end is
different from a typical SQL query engine, such as a relational database, in two important ways.

¢ Syntax: SIMS’ SQL front end accepts only a subset of standard SQL, a subset which easily corresponds
to the internal Loom query language variant used in SIMS.

o Semantics: SIMS’ SQL front end uses SQL to refer to SIMS domain concepts and relations, which
are high level source-independent descriptions (”views”) of the application domain. The terms do not
necessarily refer to tables in any particular database.

The BNF syntax for the SIMS query language is shown in Figure 3.

In both SELECT lists and constraint conditions, attributes must always be specified using the fully
qualified (Concept.attribute) syntax, even if only a single concept is referenced. This is because parsing
of the SQL might take place in an environment where the schema of the underlying view might not be
available, so there might be no context providing a way to assign attributes to concepts. The following is a

correct example:
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<query> ::= SELECT <ret-param>{,<ret-param>}+
FROM <concept-spec>{, <concept-spec>}+
WHERE condition {, condition}+

<ret-param> ::i= <colname> | <expr>
<colname> ::= <CONCEPT-NAME>.<ATTRIBUTE-NAME> | <ALIAS>.<ATTRIBUTE-NAME>
<concept-spec> ::= <CONCEPT-NAME> | <CONCEPT-NAME> <ALIAS>
<expr> = (<expr> {,expr}+)
<constant> |

~<expr> | +<expr> |
<expr> <op> <expr>

<constant> := <NUMBER> | <STRING> | NULL
<op>:::*'+,-—l/

<comparison ops> = = | I= | <> | > | < |>= | =<
<condition> ::= <expr> <comparison-ops> <expr> |

<expr> IN <expr> | )
<expr> LIKE <expr> |

<condition> AND | OR <condition> |
NOT <condition> |

(<condition>)

Figure 3: BNF for the SIMS Query Language, SQL Syntax

SELECT ConceptZ.a
FROM ConceptZ
WHERE ConceptZ.b > 10
while the next two examples are incorrect because attributes are not specified with the fully qualified syntax.
SELECT a
FROM ConceptZ

SELECT Concept¥W.b
FROM ConceptW
WHERE b like "%LARGEY"
As alluded to above, aliases can be used if desired:
SELECT R.a, R.b, S.b, S.c
FROM ConceptX R, ConceptY S
WHERE R.d = S.e

However, Concept. * (meaning all attributes) is not supported. In addition, SIMS does not currently dis-

tinguish between sets and bags of tuples. Practically, this means that in SELECT statements everything is
distinct.

The following is an example of SIMS query in SQL format
SELECT Seaport.port-name
FROM Seaport
WHERE Seaport.cranes > 7
==> ("Long Beach" "Norfolk" ...)
This query asks for the names of large seaports. Equivalently, the following query returns the same infor- 1
mation.

SELECT Large-Seaport.port-name
FROM Large-Seaport

There are a few exceptions in SIMS’ SQL support. Constraints and expressions are currently only
expressed in terms of simple arithmetic and boolean operators. In addition, SIMS’ treatment of aggregate
operations is currently very limited. Specifically, the following are not supported:

¢ Nested SELECTs.
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e START WITH, GROUP BY, HAVING, CONNECT BY conditions.

e ORDER BY, FOR UPDATE.
e set operations UNION, UNION ALL, INTERSECT, MINUS.

o use of ROWNUM or other pseudocolumns.

Finally, as a (Lisp) syntactic convenience, the system is configured by default to intepret apy occurrence of
the underscore character (_) in concept names and attribute names to the dash (-) character. For example, the
concept-name RUNWAY_LENGTH would be rendered as RUNWAY-LENGTH. This detail is unimportant
except for users attempting to match up with a preexisting SIMS domain model using terms denoted with

the (-) character.
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3 The Domain Model

A domain model provides the general terminology for a particular application domain. This model is used
to unify the various information sources that are available and provide the terminology for accessing those
information sources. Throughout this manual we use a simple application domain that involves information
about various types of seaports. The example is simple so that we can provide a complete, but short,
description of the model. Figure 4 shows our example domain model.

3.1 The Model: Classes and Attributes

The domain model is described in the Loom language, which is a member of the KL-ONE family of KR
systems. In Loom, objects in the world are grouped into “classes”. Qur example domain has several classes:
Seaport, Large Seaport, Small Seaport, American Large Seaport, European Large Seaport and Country.
The classes are indicated with circles in Figure 4. Subclass relationships are shown by dark solid arrows.
For example, the class Large Seaport is a subclass of Seaport. This means that every instance of Large
Seaport is also an instance of Seaport. A class can have any number of subclasses, but (currently) SIMS
allows a class to have at most one superclass.

The figure also shows that Large Seaport and Small Seaport form a covering. This means that the
class Seaport is the union of Large Seaport and Small Seaport. Thus, every seaport is either a large
seaport or a small seaport.

Classes generally have attributes associated with them. For instance, the class Seaports has six attributes
associated with it, a geographic code (geoloc-code), a port name (port-name), the number of cranes in
the port (cranes), the channel depth (depth), the seaport’s country code (seaport-country-code), and a
country (country). This means that every seaport has a corresponding geographic code, port name, number
of cranes, depth, and country code. Attributes are inherited down to subclasses. Thus, every large seaport
will also have these six attributes, since Large Seaport is a subclass of Seaport. European large seaports
have seven attributes, since they inherit the six attributes from Large Seaport, plus there is an additional
attribute, the tariff code, associated with that class.

Classes can be defined as either primitive classes or they can be defined in terms of other classes. A
primitive class has no explicit definition specifying the constraints that differentiate it from its superclass. For
example, one might could create the class Large Seaport without specifying what constraints differentiate
it from its superclass, Seaport. In terms of modeling a set of sources, this is useful in the case where you
have two sources, where one is clearly a subclass of the other, but there is no simple way to characterize the
specific subclass of information it contains.

Alternatively, it is possible to define the relationship between a subclass and superclass by explicitly
describing the constraints on the subclass. For example, a large seaport might be defined as a seaport with
more than seven cranes. This is what we have done in our example domain, as shown in Figure 4, where
the class Large Seaport is defined as Seaport A (> cranes 7).

3.2 Specifying the Model: Class Definitions

Figure 5 shows the six class definitions that must be given to SIMS to specify the classes in our example
domain. (See Figures 7 and 8 for a BNF description of the modeling language.) The class definition
indicates whether or not the class is primitive. When a class is defined in terms of other classes, such as
Large Seaport, the definition is specified using an “is” clause. The “is” and the “is-primitive” clauses are
also used to indicate any attributes associated with the class. ]
Class definitions also have an “annotations” field. SIMS requires that every class has at least one defined
key, which consists of one or more attributes that uniquely identify each instance in a class. Since there
may be more than one way to uniquely identify an instance, a class can have multiple keys. For example,
any seaport can be uniquely identified either using the geoloc-code or the port-name. Because more than
one attribute may be necessary to uniquely identify an instance, a key can include multiple attributes. For
instance, in another domain, it might be that street number, street name and city name are all necessary to
uniquely identify a particular house. '
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Figure 4: Domain Model

The annotations field of a class definition is also used to indicate that a class is a covering (i.e., the
union) of some of its subclasses. For example, the class Seaport is the union of Large Seaport and Small
Seaport.

3.3 Specifying the Model: Attribute Definitions

There are two types of attributes in SIMS. Most of the attributes in our example domain are simple attributes,
in that they are basic classes: strings or numbers. But attributes can also represent relations between two
defined classes. For instance, Seaport has an attribute called Country-of, so that every seaport is associated
with a country. Thus, Country-of is a relation between Seaport and Country.

Figure 6 shows the relation definitions that define the attributes used in the domain model. Notice that
cach attribute has a domain and range. Defined relations (attributes that relate two classes) have a definition.
For instance the Country-of relation has a definition which specifies that the relation holds between a seaport
and a country if the seaport’s seaport-country-code matches the country’s country-code.

There cannot be two different attributes with the same name. In our example, Seaport has the attribute
seaport-country-code, and Country has an attribute country-code. Even though these are both ‘country
codes’, the names of the attributes must be different.!

The domain model is used as the basis for the SIMS query language that enables the user to construct
queries. The classes included in the domain model are not necessarily meant to correspond directly to objects
described in any particular information source. The domain model is intended to be a description of the
application domain from the point of view of someone who needs to perform real-world tasks in that domain

1Had we wanted a Seaport to have an attribute called country-code, we would have done so only by making the model
more complex. For instance, we could have created a class Geographic entity with an attribute country-code, which could
have been a superclass of both Country and Seaport, in which case the attribute country-code would have been inherited down
to both of these classes.
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(def-sims-concept seaport
tis-primitive (:and sims-domain-concept
(:the country-of country)
:the geoloc-code string)
:the seaport-country-code string)
:the port-name string)
:the cranes number)
(:the depth number))
:annotations ((key (geoloc-code))
(key (port-name))
(covering (large-seaport small-seaport))))

NN N N

(def-sims-concept large-seaport
:is (:and seaport
(> cranes 7))
:annotations ((key (geoloc-code))
(key (port-name))
(covering (american-large-seaport
european-large-seaport))))

(def-sims—concept small-seaport
:is (:and seaport
(<= cranes 7))
:annotations ((key (geoloc-code))
(key (port-name))))

(def-sims-concept american-large-seaport
tis-primitive large-seaport
:annotations ((key (geoloc-code))

(key (port-name))))

(def-sims-concept european-large-seaport
:is-primitive (:and large-seaport
(:the tariff-code string))
:annotations ((key (geoloc-code))
(key (port-name))))

(def-sims-concept country
:is-primitive (:and sims-domain-concept
(:the country-code string)
(:the country-name string)
(:the currency string)
(:the language string))
:annotations ((key (country-code))))

Figure 5: Class Definitions for our Example Domain

and/or to obtain information about it. SIMS is designed to allow users to query the domain model without
specific knowledge of the way the actual information sources relate to the domain model. The next section
describes how application developers describe the actual information sources and their relationship to the
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domainr model.
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;35 Seaport attributes

(def-sims-relation geoloc-code
:domain seaport
:range string)

(def-sims-relation port-name
:domain seaport
:range string)

(def-sims-relation cranes
:domain seaport
:range number)

(def-sims-relation depth
:domain seaport
:range number)

(def-sims-relation seaport-country-code
:domain seaport
:range string)

(def-sims-relation country-of

:domain seaport

:range country

:is (:satisfies (?s ?c)

(:and (seaport ?s)

(country 7c)
(seaport-country-code ?s ?cc)
(country-code 7c ?cc))))

;3; European Large Seaport attributes

(def-sims-relation tariff-code
:domain european-large-seaport
:range string)

;33 Country attributes

(def-sims-relation country-code
:domain country
:range string)

(def-sims-relation country-name
:domain country
:range string)

(def-sims-relation currency
:domain country
:range number)

(def-sims-relation lang
:domain country

:range number) 72

Figure 6: Attribute Definitions for our Example Domain




class-definition ::=
(DEF-SIMS-CONCEPT ClassName
is-clause
annotations-clause)

is-clause ::=
.IS-PRIMITIVE (:AND SuperClassName attr-clause*) |
:IS (:AKND SuperClassName constraint-expr*)

annotations-clause ::=
: ANNOTATIONS (annotation+)

annotation ::=
(KEY (AttributeName+)) |
(COVERING (SubClassName SubClassName+))

attr-clause ::=
(:THE AttributeName ClassName) |
(:THE AttributeName STRING) |
(:THE AttributeName NUMBER)

constraint-expr ::=
(test Term Term) |
(:FILLED-BY AttributeName Term) |
(:NOT-FILLED-BY AttributeName Term)

test ::=
> | o< | > | <= | = |

Figure 7: BNF for Class Definitions

simple-relation ::=
(DEF-SIMS-RELATION RelationName
:DOMAIN ClassName
:RANGE [NUMBER | STRINGI)

defined-relation ::=
(DEFRELATION RelationName
:DOMAIN ClassName
:RANGE ClassName
:IS (:SATISFIES (VariableName VariableName) constraint-expr))

constraint—-expr ::=
(:FOR-SOME (VariableName) constraint-expr)
(:AND constraint-expr+) |
(AttributeName Term Term) |
(ConceptName Term) |
(test Term Term)

test ::=
> | < 1 > | <= | = |

Figure 8: BNF for Attribute Definitions
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4 Defining Information Sources

In order to extract and integrate data from an information source, a person building an application must
describe the contents of the source using terms from the domain model and define the details of how the
source is accessed. Each of these issues is addressed in turn.

4.1 Describing the Contents of an Information Source

Each information source is incorporated into SIMS by describing the data provided by that source in terms
of the domain model presented in the previous section. This description provides the following information:

o The precise class of instances provided by a source.
o The set of attributes that are available from the source.

o The name of the source that provides the data (the next section will define additional information
about accessing each source)

The mapping from the table/class name of the source and the name used in the domain model.

The mapping from the attribute names used in the source and those used in the domain model.

To illustrate the principles involved in representing an information source within SIMS, consider how
a set of sources would be represented using the domain model described in the previous section. Figure 9
shows the example domain model linked to a set of seven separate sources.

geoloc-code country—code
______ country-name
pé;;@— - cranes ~—a currency
scc< seaport-country—cdde tanguage

cc

cn
urr

ang

covering
~
~
gc — >~ g = Seaport A
_____ (> cranes 7)
-

covering

= Seaport #
(<= cranes 7)

American
Large
Seaport

European
Large
Seaport

tariff-code

domain
attributes

provided
attributes !

Figure 9: A Set of Sources Described by a Domain Model

In the figure, each source is linked to a class with a dashed line. The meaning of such a link is that the
source provides exactly the set of instances described by the class of the domain model. Thus, the figure
shows that 52, S3, and S7 all provide ezactly the same set of large seaports. If there is another source that
provides only a subset of a class of instances, then a new subclass in the domain model would be created
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and the source would be linked to that class. Sources S4 and S5 are both examples of sources that provide
subclasses of large seaports and thus are linked to the appropriate subclasses in the domain model.

Since different sources often provide different attributes for the same class, we do not require that all
sources provide all attributes of a class. In the figure, the attributes provided by each source are shown next
to the individual sources.

The general form of a source description statement is shown in Figure 10. There will generally be one
of these statements for each table or relation in a source. However, in some cases, sources can be more
naturally modeled by mapping a single relation in the source into more than one domain class. As shown in
the figure, a domain class is used to describe a source table and DB and the domain attributes are linked to
the corresponding attributes of the source.

(source-description <domain-class> <source-table> <source-db>
(<domain-attribute-1> <source-attribute-1>)
(<domain-attribute—-2> <source-attribute-2>)

(<domain-attribute-n> <source-attribute-n>))
Figure 10: General Form of a Source Description

Consider how a specific source in Figure 9 would be described. For source S7, which provides the port
name and depth of Large-Seaport. The description of this source is shown in Figure 11.

(source-description Large-Seaport S7 EXKB7
(port-name pn)
(depth dp))

Figure 11: Source Description for Large-Seaports table of S7 Database

4.2 Accessing an Information Source

In addition to specifying the contents of an information source, the system also needs to know what infor-
mation sources are currently available and how to access them. This section describes the basic commands
for declaring information sources.

To make an information source available to the system, the name, and host must be declared in advance.
This provides the information required for accessing an information source. The template for declaring an
information source is shown in Figure 12. The <sims name> provides a term for referring to a specific
information source with SIMS. The <source type> defines the specific type of source. The set of possible
types are listed below. The :host is the name of the machine where the information source is running.
The :agent-name of a source is the unique name that KQML uses to identify the particular source. Each
SIMS agent also has a unique name and can serve as a source to other agents. The :db-name is the internal
database name, which might not be unique since you may have multiple instances of the same information
source running on different hosts. The :userid is the internal userid for a database.

(define-source <sims name> <source type>
:host <information source host>
:agent-name <name used by KQML>
:db-name <name used within a DB>
:userid <user id for a DB>)

Figure 12: Template for Defining an Information Source

There are currently four predefined source types and they are explained in the subsections below.
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4.2.1 loom-kb-source

For small sources, such as translation tables or source tables of data, it is very simple to create a local
knowledge base. In Section 9, we provide an example that uses a number of KBs. This type of source is
referred to as a loom-kb-source. For example, to define the source called mapping-table as a knowledge
base, it would be declared as follows:

(define-source mapping-table loom-kb-source)

4.2.2 kqml-odbc-sql-source

The most frequently used type of source will probably be a kgml-odbc-sql-source. This is a source that
supports the full SQL query language and supports ODBC communication. This can be used to communicate
with any of the commericially available relational database systems, although it may require purchasing a
separate ODBC package from either the database vendor or a third-party vendor. An example of how such
a source would be declared is shown below:
(define-source giti8i kqml-odbc-sql-source

:host "isdb64.isi.edu"

‘agent-name "sql_server"

:db-name "assets"

:userid "abc")

4.2.3 kqml-sp-sql-source

In some cases a user may build their own source that supports a restricted set, of SQL. For these purposes, we
have defined a kqml-sp-sql-source, which is a source that communicates using KQML, but only supports
selections and projections (SP) within the SQL language. Such a source would be declared as follows:
(define-source URL_SRC kqml-sp-sql-source

thost "isdb4.isi.edu"

:agent—name "URL_SRC")

4.2.4 kqml-sims-source

Each instantiation of SIMS can be thought of as an information agent that can in turn provide data to other
SIMS agents. To do this, you would declare the other SIMS agents as kqml-sims-source. These source use
the SIMS query language and send information using KQML. Such a source would be declared as follows:
(define-source other-sims kgml-sims-source

:agent-name "LOGISTICS")

4.3 Modeling Hints

A single domain class can be used to describe multiple sources. For instance, the domain class “Large
Seaport” in the “Seaports domain” is linked to the sources $2, $3, and S7.

Note that if two (or more) sources (e.g., S2 and S7) are linked to the same domain concept (e.g.,
Large-Seaport) and those sources have a common attribute (e.g., port-name) then both sources need to
have the same values of that attribute (i-e., every port name, pn, present in S2 also has to be present in S7,
and vice versa). A source concept may contain attributes that are not linked to any domain relation.

Consider the example shown below. In this example there is only one source (S1) linked to the concept
“Seaport”.
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e The query “return all port names of Large Seaports” is “answerable” because “Large Seaport” is
defined as the subset of “Seaport” that has at least 7 cranes. As the source S1 provides all seaport
names, we can select (from S1) only those port names that have at least seven cranes.

e The query “return all port names of American Large Seaports” is “not answerable” because there is
no way of specifying which Large Seaports are American.

For another example, consider the model below:

American
Large
Seaport

geoloc—code

port-name
cranes

seaport—country-code

= Seaport A
(> cranes 7)

covering

European
Large
Seaport

Here there is only one source (S4), linked to the concept “American Large Seaport”. The query “return
all port names of Large Seaports” is “not answerable” because we have information only about “American
Large Seaports”, not ALL Large Seaports.

Finally, consider a third example:
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Here there are two sources S4 and S5. The query “return all port names of Large Seaports” is “an-
swerable” because “American Large Seaport” and “European Large Seaport” represent a covering of “Large

Seaport”. Consequently, the union of port names from S4 and S5 represents all “port names of Large
Seaports”.
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5 Information-Source Wrappers and Communication

Once the SIMS planner has selected the desired sources for a user’s query and devised a plan for obtaining
the required information, it must communicate with the individual information sources. Sometimes the
information source may be complex and difficult to communicate with and additional data processing or
functionality may be required. In order to modularize this process and cleanly separate query planning from
communication issues, SIMS requires that for each type of information source there exist a wrapper with
which it will communicate. The purpose of the wrapper is to mediate between SIMS and_the information
source. The wrapper must be capable of translating between the query language obtained from SIMS and
the information source’s query language if necessary, as well as translating between the data output format
of the information source and a format appropriate for SIMS.

This section explains how wrappers are used by SIMS. The first subsection describes the data that is
communicated. The subsequent subsections describe the protocols by which the data is passed; KQML and
CORBA.

5.1 Information Source Wrappers

An information source’s wrapper will receive a query from SIMS as input. The syntax of this query language
can be varied, so long as the wrapper and SIMS have agreed upon it. Predefined examples include the SIMS
query language or SQL. See section ?? for more on information sources. One restriction is that all concepts
and roles used in the query will be drawn only from that information source. Note that at the time when
such communication takes place SIMS has already determined that the query being sent to the information
source can be processed in its entirety by that source alone.

The information source’s wrapper performs any necessary mediation between SIMS and the information
source. This may involve translating the query into the information source’s particular query language,
providing additional information to the information source or any other necessary reconciliation between
SIMS and the information source. It then submits a query to the source and retrieves the data. Next, it
packages this data into a list of tuples corresponding to the variable parameters used in the submitted query.
This tuple is then returned to SIMS. See Figure 13.
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Figure 13: Data Flow between SIMS and Wrappers

In this way, SIMS is insulated from the particulars of each information source. All the complexity of an
information source is hidden from SIMS via the wrapper module.
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5.2 Remote Communication Using KQML

If an information source server is loaded into the running SIMS environment, a straight function call to the
appropriate information source wrapper function is sufficient to process a query. For communication with
servers running on remote hosts, SIMS uses the Knowledge Query and Manipulation Language (KQML)
protocol, which is a language for communication and knowledge sharing between autonomous programs. A
simplified view of KQML-based communication is presented in Figure 14. ’
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Figure 14: Communication via KQML

For our purpose, KQML provides two main types of functionality that ease the communication between
clients and servers (KQML refers to both clients and servers as agents). KQML provides a flexible standard
language for client-server communication that is available for many platforms, as well as implementation in
different languages. It also provides a registry of all clients and servers, so that a client only need to refer
to the name registered on the registry by the server (which is usually the name of the service provided and
hence more meaningful than just a host address) to communicate with the servers.

The central registry of services in KQML is called the agent name server (ANS), and it records all KQML
agents and their addresses. We are mostly interested in the ANS for providing the addresses of information
sources SIMS needs to communicate with (this address resolution process happens transparently and does
not require user intervention). The client and server must both be registered with the ANS. The global
variable kqml: : ¥kgml-ans~host* specifies where the ANS is located, and both the client and server should
agree on an ANS accessible to both. A server registers itself by executing the command:

(KQML:START-KQML <server name>)

where <server name> must be unique. Clients are started by invoking (start-kqml-client), and this
function call will register the client using a unique name of the following form, <user>@<host>-<timestamp>,
where timestamp is obtained from (get-universal-time).

In order to check what is available on a ANS, or to verify that a service that was registered is up, one
can issue the following command in a UNIX shell:

($KQML _HOME) /bin/agentls

Note that the KQML clients/servers only contact the ANS once to verify the existence of a server and to
get its address. The user need not know where a particular server is located but only its name (e.g., SQL-
QUERY-SERVER). KQML transparently resolves the location through the ANS and caches each resolved
location. The communication protocol used by KQML is TCP/IP. KQML creates a process that listens on
a remote TCP/IP stream in order to detect messages from remote hosts.

The ANS used by KQML must be accessible to both SIMS and to any users of the SIMS system, but
need not be run on those systems itself. To run a ANS at a site, execute the following command in a Unix
shell:
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($KQML_HOME) /bin/startans <hostname> &

The client must know the messages supported by the server program because only those can be processed.
In KQML terms, SIMS acts as a mediator between the client and the information sources. A KQML mediator
receives a request and either delegates it to one or more other servers, or processes it internally/locally (e.g.,
in a local database). Hence the information source server needs to define a handler for the messages it will
support and the client needs to know these messages together with their form.

SIMS currently uses only the :ASK-ALL KQML performative to communicate with remote information
source servers. The KQML message sent by SIMS to the information source servers are of the form:

(:ASK-ALL :SENDER <SIMS server> :RECEIVER <info-source server>
:REPLY-WITH T :CONTENT (<SQL query><hostname:dbname><username>))

while the KQML message sent by a client program must be of the form:

(:ASK-ALL :RECEIVER <SIMS server>
REPLY-WITH T :CONTENT (SIMS-RETRIEVE <output args><query body>))

5.3 Remote Communication Using CORBA

As CORBA [3] is supported by virtually all the industry leaders, making SIMS a CORBA-compliant appli-
cation broadens the area of potential SIMS application. For instance, any CORBA-compliant application is
able to act like a SIMS client (i.e., to send queries to SIMS and to use the returned answers). Furthermore,
a CORBA-compliant version of SIMS is able to access information sources that use CORBA-based software
wrappers. A simplified view of CORBA-based communication is presented in Figure 15.

CORBA defines distributed services for inter-process and inter-platform messaging, and it provides inter-
operability between applications written in different programming languages, running on different machines
in heterogeneous, distributed environments. CORBA is an interoperability standard that has several im-
plementations (e.g., Orbix, ILU, VisiBroker), and we currently support the Orbix 2.2 [7] implementation of
CORBA.

’ A CORBA-compliant interface is provided to let SIMS act both as a CORBA client (e.g., to access
information sources via CORBA wrappers) and a CORBA server (i.e., to receive queries from CORBA-
compliant applications).

Based on our CORBA-to-KQML adapter, any number of CORBA-compliant applications can use SIMS
as a query-answering system. SIMS is unable to discern between the queries sent by CORBA-based and
KQML-based clients, and, consequently, the communication will be done in a uniform, transparent manner.
SIMS can also access information sources that use CORBA wrappers: each type of information source will
offer a distinct, specific interface, and we will need a specially-designed KQML-to-CORBA adapter for each
type of information sources. However, instead of being compelled to modify the SIMS code for each new
type of information sources, we will be able to implement these adapters as stand-alone applications, and
SIMS will be unable to tell a CORBA-based source from a KQML-based source.

5.3.1 The CORBA-to-KQML adapter

The idea behind the CORBA-to-KQML adapter is to create a CORBA server that provides services equiva-
lent to a minimal subset of the API provided by KQML. The CORBA-to-KQML adapter has a dual nature:
it acts like a CORBA server for the CORBA client, and once it receives a query, it turns it into a KQML-
based query and sends it to SIMS (i.e., the adapter acts like a KQML-based client of SIMS). One important
advantage of the CORBA-to-KQML adapter is that developers of the CORBA clients do not have to know
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Figure 15: Communication via CORBA

anything about KQML. From their point, of view, they are accessing a CORBA server with an easy-to-use
interface [6].

Figure 16 shows a simple example of a CORBA client that reads a query specified as a command line
argument and sends it to the SIMS server named SimsAgent. In order to communicate with the SIMS
server, the client sends the query to the CORBA-to-KQML adapter named CORBA2KQML which is located on
the machine vigor.isi.edu.

5.3.2 The KQML-to-CORBA adapter

As information sources can be accessed in different ways (e.g., different information sources may provide
different IDL interfaces, a single information source might offer several IDL interfaces, etc.), it is not possible
to design a unique KQML-to-CORBA adapter that can be used for any type of CORBA-based wrappers.

In order to avoid any changes in the SIMS code, we designed the adapter so that SIMS sends it the
message as if it were addressed to an information-source wrapper. The message is received by the adapter,
which translates it to a sequence of CORBA requests and asks the corresponding CORBA server to execute
the resulting sequence of services. For details see [6].
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main(int argc, char **argv)

{

CORBA2KQML#* an0Obj = NULL;
char *query;

if (arge>=2) {
query=argv[il;

} else {
printf("Usage: client querystring");
exit(1);
}
TRY{
an0bj = CORBA2KQML:Lbind(":CORBAZKQML”,"vigor.isi.edu“,ITX);
}
CATCHANY{
cout << "error" << ITX << endl;
}
ENDTRY
TRY{
ckqml_message._var answer;
char* ptr;
char p[100];
int i, n;
fprintf( stderr, "ret_sendmsg = %1d",
anObj->SendQuery( 1200, query, "SimsAgent", answer) );
}
CATCH(CORBA: :SystemException gse){
cout << "QQQQ #### CORBA 2 KQML exception raised!!!" << endl;
cout << endl << &se <<endl;
}

Figure 16: CORBA client
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6 Ruhning SIMS

This section describes the commands that can be used to interact with SIMS. The commands can be issued
In two ways: 1) Through a command-line interface via the Lisp listener or 2) using the graphical interface.
6.1 Top-Level Commands

The top level commands of SIMS can be classified in these groups: query commands, query set management
commands, information source management commands, and tracing commands. They are described in the
following sections.

6.1.1 Query Commands

(sims-retrieve <parameter-list> <query-exp>)

This is the command to execute a query. A complete description of the query syntax is provided in Section 2.
This command will cause data to be retrieved and displayed.

(run-query <num>)

This command has the same effect as (sims-retrieve). However, rather than receiving a literal query as an
argument, it causes the pre-stored query denoted by <num> to be executed. (see query set management
subsection). -

6.1.2 Query Set Management Commands

Sometimes it is convenient to have frequently used queries stored in the system. A query set can be predefined
by setting the global variable *queries* to the list of queries. Often, this query set is predefined in a file

which can be loaded at run-time. This query set can also be used from the graphical interface described in
the next section.

(list-queries) Provides a list of the numbers of predefined queries.

(load-comment <num>) Retrieves the comment for query <num>.

(load-query <num>) Retrieves query <num> and displays it in normal form.

(plan-query <num>) Generates the plan for performing query <num>), but does not execute it.

(display-plan <plan>) Displays the plan returned by plan-query. (E.g., (display-plan (plan-query
1)) will display the plan for query 1.

(run-query <num>) Executes query <num>.

The syntax for the query set is:
(setq *queries* ’(

(<num> <comment> <query>)

(<num> <comment> <query>)

)

Here is an example of a query set:

(setq *queries*
’(;; Large Seaport queries
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(1 "List the geoloc—codes and number of cranes for all large seaports"”
(sims-retrieve (?gc ?cr)
(:and (large-seaport ?1ls)
(gc 71s 7gc)
(cr ?1s 7cr))))

(2 "What is the currency of France"
(sims-retrieve (?currency)
(:and (country ?c)
(en ?c “FRANCE™)
(currency ?c ?currency))))

))

6.1.3 Information Source Management Commands

The commands for manipulating the information sources are:

(list-sources) Lists all of the declared information sources.
(available-sources) Lists all of the currently available information sources that the system can access.

(initialize-source <unique-id>) Initializes the given information source. In effect, this command tells
SIMS that the source is ready to provide information and can be used in planning steps.

(initialize-all-sources) Initializes all defined informationsources. This can also be referred to as (init-all-is).

(close-source <unique-id>) Closes the given information source. The source is marked unavailable and
no longer used in planning.

(close-all-sources) Closes all of the defined information sources.

6.1.4 Tracing Commands

In order to facilitate debugging and show the behavior of the system in a greater detail, the following
commands instruct SIMS to print additional information about its processing.

(sims-trace-on) Turns on tracing. SIMS prints additional information on the query planning and exe-
cution, such as plan steps, partial reformulations, information sources accessed, intermediate results,
etc.

(sims-trace-off) Turns off tracing.

(sims-trap-on) SIMS traps all errors (returning nil at the end of execution if the errors prevented the
successful execution).

(sims-trap-off) When an error occurs in the processing, SIMS allows the original error handler to interrupt
the execution. This command is useful when debugging an application.

6.2 Graphical User Interface

This section describes how to interact with SIMS through its graphical user interface.
The graphical interface to SIMS is invoked via two function calls, (sims-java-server) and (java—interface),
in that order. Below is a sample interaction:
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SIMS(19): (sims-java-server)

#<MULTIPROCESSING:PROCESS Java Server Q #x1a203a2>
SIMS(20):

Java Listener started on port 6001 12:19:09 12/5/1997

SIMS(20): (java-interface)

;55 Spawning java interface...
SIMS(21):

;Accepting Java connection from [128.09.208.55]/6001
SIMS(21):

istall locations in Tunisia.

(Sims-Retrieve ("AL MAHDIYAH" “ADLS*) [ERY
{?Geographic-Name 7Geoloc - Code) (*AS SUKHAYRAH" "APFD*)
(And ("ASHTART" "APRI*)
(Country 7Country) . || (“BANZART+ "“AVIE*)
(Country- Code ?Country 7Country-Code) || ("BIZERTE" "BSRK*) ]
(Country-Nm ?Cauntry TUNISIA) : ({BIZERTE® “BSRL™) . . . i
wagicocaton 1Geograpi Location (oo At )
(Geo- Country - Code ?Geographic~ Location 7Country - Code) Kol e e ) :
{Geographic - Name ?Geogradﬂc-!.pcaﬁon ?TGeographic-Name) DJERBA® “FGTW*)
{Geoloc-Code ?Geographic-Location ?Geoloc-Cotle))) -  SPTXU")
i (“"EL BORMA® *PTZH")
< ("GABES* “HNTX")
("GABES" "HNT")
("GABES" "HNTS") i
¢ <. o i .. 22
bbb b e bt

Figure 17: SIMS graphical interface

The SIMS interface (see Figure 17) is divided into four main panes: the Command Panel (top), the

Interaction/Trace pane (lower right quadrant), the Query pane (lower left quadrant), and the Graph pane
(upper half).

The user issues commands by selecting a command from the Command Panel. Typically, an interaction
sequence will proceed as follows:

I. Click Select Query and choose a query to solve. The chosen query will be displayed in the Query
pane.
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2. To perform the actual retrieval, once a query has been chosen, click Execute Query. The appropriate
plan graph will be shown in the Graph pane and the state of the execution is indicated by coloring
the nodes in the graph. White denotes an unexecuted plan action, green denotes a currently executing
plan action, grey denotes a completed plan action, and pink denotes a failed plan action. The final
answer will be displayed in the Interaction/Trace pane.

6.2.1 Graphical Interface Commands

Select Query Brings up a menu of the set of queries that were loaded into the system on startup (in the
variable *queries*). Each query is a checkbox that can be selected. Only one query can be selected
at a time. The selected query will be displayed in the Query pane. This is the query that will be used
by Execute Query.

Execute Query Executes the current query. The graph plan currently being executed will be shown in
the graph panel. The final result will be displayed in the Interaction/Trace pane.

Source Status Brings up the list of existing information sources. Each source has a status associated with
it, which the user may change manually. AVAILABLE denotes a source that is available to answer
queries, UNAVAILABLE denotes a source that is unavailable to answer queries and therefore cannot
be incorporated into a plan, FAULTY denotes a source that will cause a run-time fault. The FAULTY
status can be chosen to force a source to fail and simulate a replanning situation.

Quit Exits the SIMS interface.

6.3 Plan Cost Evaluation

The SIMS architecture allows the user to change the policy of the generation of query access plans to account
for different cost models. The function set-evaluation-function establishes the function that will guide
this generation. ,

Currently, SIMS provides two functions. The first one, ucpop: :evaluate-plan-cost, generates plans
with the minimum number of steps. The second one, ucpop: :evaluate-plan—cost-by-size, produces
query plans in which the size of intermediate data transmitted from the information sources and processed
in local joins is minimized. It uses a series of traditional database techniques to estimate the size of the
queries. It considers both the expected number of tuples that a query will produce and the projection
attributes. In order to calculate this estimate, it uses some statistics computed from the current contents
of the information sources, such as, number of instances of a concept, number of distinct values (present in
the source) of an attribute, and maximum and minimum values for numeric attributes.

Generally, ucpop: : evaluate-plan-cost-by-size both improves the efficiency of the planning process
(2 to 5-fold speed-up) and the quality of the generated plans. For complex queries this should be the function
of choice. For simple queries the performance of both functions is similar.

In summary,

e to use ucpop: :evaluate-plan-cost (the default), evaluate:

> (set-evaluation-function #’ucpop: :evaluate-plan-cost)

e to use ucpop: : evaluate-plan-cost-by-size, evaluate:

> (set—-evaluation-function #’ucpop: :evaluate-plan-cost-by-size)
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7 Trouble Shooting

What do you do once you have built the wrappers for your information sources, defined the domain model
and the information sources, and submitted the first query to SIMS only to find that it does not work? We
recommend that you first test your system incrementally from the bottom up by testing the wrappers to
the information sources, then testing the source-level queries, and finally testing your domain-level queries.
This section describes each of these in turn.

7.1 Testing the Information-Source Wrappers

Before invoking SIMS, individual wrappers for all of the information sources that are to be used should
be thoroughly tested. Each wrapper should accept a source-level query as input and return a set of
tuples that represent the answer to that query. To test the individual wrappers, invoke the function
(info-source-retrieve <source-object> <query>) for each wrapper. An example of info-source-retrieve
invocation is the following:

(INFO-SOURCE-RETRIEVE ’EXKBSQLOCAL
' (SIMS-RETRIEVE (?PN)
(:AND (EUROPEAN-LARGE-SEAPORT ?EUROPEAN-LARGE-SEAPORT)
(CR ?EUROPEAN-LARGE-SEAPORT ?CR)
(PN ?EUROPEAN-LARGE-SEAPORT 7PN)
(>= ?CR 15))))

where EXKBSQLOCAL is the name of the information source, and the second argument is a source level
query. The result of this invocation is the following;:

UCPOP Stats: Initial terms = 7 ; Goals = 4 ; Success (3 steps)
Created 33 plans, but explored only 37
CPU time: 0.0500 sec .

Branching factor: 1.000
Working Unifies: 62
Bindings Added: 20

(("Bristol") ("Rotterdam"))

If this wrapper does not return the expected data, one must determine the cause of the problem and fix it
before continuing to the next step. Any error detected at this point implies that there is a problem with the
wrapper, not with SIMS.

7.2 Testing the Source-Level Queries

Once all of the wrappers are working correctly, it is time to begin testing the source-level queries in SIMS.
The first thing to test are exactly the same source-level queries that were used to test the individual wrappers.
An example of testing a source level query is the following:

(SIMS-RETRIEVE (?PN)
(:AND (EUROPEAN-LARGE-~SEAPORT ?EUROPEAN-LARGE-SEAPORT)
(CR ?EUROPEAN-LARGE-SEAPORT 7CR)
(PN ?EURCPEAN-LARGE-SEAPORT ?7PN) (>= ?CR 15)))

UCPOP Stats: Initial terms = 7 ; Goals = 4 ; Success (3 steps)

Created 33 plans, but explored only 37
CPU time: 0.0500 sec
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Figure 18: SIMS Error Hierarchy
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8 Installation and System Requirements

The SIMS system currently runs in Allegro Common Lisp 4.3 under Solaris on SUN workstations. Older
versions which were released on ACL using other versions of Unix, on MCL 2.0 on the Macintosh and Lucid
Common Lisp 4.0 on Unix are no longer fully supported. SIMS requires the following software components:

Loom provides the underlying knowledge representation and programming support. Loom is available by
signing a license with USC/ISI. For more information, see http://www.isi.edu/isd/LO0OM/~
LOOM-HOME . html Currently, we are using Loom version 3.0, patch version 38 or greater.

MK-DEFSYSTEM is used to organize the Lisp files and providing system building and maintenance sup-
port. MK-DEFSYSTEM is currently included with Loom, and is available from the CMU Al Reposi-
tory as well if needed (e.g., at http://www-cgi.cs.cmu. edu/afs/cs.cmu.edu/project/~
ai-repository/ai/lang/lisp/code/tools/defsys/mkant/defsys25 .tgz). We require version v2.5.

KQML (Knowledge Query and Manipulation Language) provides remote communication support between
SIMS and remote DB servers, and between other information integration agents and SIMS. It can also
be used to communicate between multiple SIMS servers. We are currently using KQML version 2.08.
Included with the SIMS release are several patches which improve the performance of KQML in the
SIMS world. KQML is available by signing a license with University of Maryland, Baltimore County.
For more information, see http://www.cs.umbc. edu/kgml/.

ODBC. We include with SIMS code which provides a programmatic interface to Oracle databases using
ODBC. We currently use ODBC 2.0 and are porting to ODBC 3.0; these products are from InterSolv
and are available from third-party retailers. This component is also optional since SIMS can be run
with any database wrapper you may choose to implement.

CORBA. We also include with SIMS code which interfaces between CORBA. and KQML. This interface is
entirely optional as well. It does require ORBIX version 2.2 from Iona Technologies to run. For more
information on ORBIX, see http://www.iona.com/.

CVS. We use CVS to manage the software configuration of the SIMS system under Unix. Again, this is
entirely optional. While using SIMS release does not require that you use CVS, it may be helpful for
tracking your local development of source descriptions and domain models. CVS is GPL software and
1s available from prep.ai.mit.edu and other FSF FTP locations.

8.1 Component Structure

Here is our current component and directory structure, which we recommend that users adopt:
> config — configuration and customization of the SIMS release
> documentation — for any general-purpose documentation
> domains — for dorn_a.in models, source descriptions, KB data (if relevant), and queries

> <domain-name> — e.g., transportation, logistics
> domain - for domain models and domain-level queries
> sources — for source descriptions used in <domain-name>
> <source-name> — e.g., airports-db, inventory-kb

> sys — for SIMS system code

> defsys - MK-DEFSYSTEM files for various systems and modules making up SIMS

> modeling — implements the information source ontology used by SIMS and the APIs for the
various source types.
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> Planner — Implementations of SIMS planner(s) including operators and source selection code.

> Wrapper — General code used for implementing information source wrappers (e.g., for WWW
pages)
> netutils — code for interacting with WWW, sockets, and GUIs, and query logging, etc.

> tools — for self-contained auxiliary modules and third-party code used to support SIMS

> cl-http — Common Lisp Hypermedia Server code
> corba2kqml — Corba/KQML gateway

> 1isp — various lisp utils including multiprocessing, regular expression handling, and error report-
ing

8.2 Define, Load and Compile Components

As mentioned above, we use the MK-DEFSYSTEM from CMU (this comes with LOOM) to define each
subsystem. Each software component and domain has its own system declaration file, e.g., planner.system,
example.system. If you want to define your own subsystem, please see the files in the defsys directory for
examples.

One can define a component that includes many other components. For example, there is a subsystem
called riscsims.system which includes common, planner, operators, preprocessor, and eval.

Before you can use the defsystems, you will need to set two global variables. The first variable,
user: :*ariadne-root-dir*, sets the directory for the location of all of the subsystems:

(setq *ariadne-root-dir* "/home/johndoe/sims/sys/ariadne/")

The second variable, mk: : ¥central-registry*, sets the location of the defsystem definitions for each
of the components:

(setq mk::*central-registry* ’ (*/home/sims/sys/ariadne/sys/defsys/"))

One can load a system using the command mk:operate-on-system. For example, to load riscsims,
you do:

(mk:operate-on-system :riscsims :1load)

You can substitute the keyword :load by :compile to compile the system.
(mk:operate-on-system :riscsims :compile)

You can also force the system to recompile all of the files in a component by appending the :force
keyword:

(mk:operate—on-system :riscsims :compile :force t)

The typical sequence of loading SIMS is to load the riscsims system first, then load the optional
components that you need, and finally load the domain model and source description information that are
specific for your application. ‘

For example, after loading in the riscsims system, you would load the example from the manual as follows:
(mk:operate-on-system :example :load :compile-during-load t)

8.3 Complete build procedure

Here are the steps to build a complete version of SIMS which will be able to execute the example queries
shown in this manual by use of several sample knowledge base sources.

1. Install and configure SIMS

(a) Obtain the file SIMS.tar.gz. This compressed archive is for Sun/Solaris and anticipates that you
have Allegro CL 4.3 and Loom already installed at your site. Before you can use this archive, you
should have already executed licenses for Loom and for KQML.-

(b) Use gunzip to uncompress that file into a regular tar file.
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(d)
(e)

Choose a directory into which to expand the tar archive. This will be your “root directory.”
Change to this directory.

Use tar -xf SIMS.tar . to recreate the subdirectory structure in that directory.

In your shell and/or .cshre file, set the following variables. You may find it helpful to refer to
the sample .cshrc file supplied in the ./config subdirectory of the recreated archive.

i. setenv ARIADNE_ROOT root_directory

li. setenv KQML_HOME $ARIADNE ROOT/tools/kqml/kqml-2.06/

2. Configure and build KQML

(a)
(b)

Change directory to KQML: cd $KQML.HOME/src/lisp
make -f Makefile.solaris tcp.so

3. Build basic SIMS in Lisp

(a)
(b)

()

(d)

()

Begin a Lisp session using your pre-built image of ACL 4.3. For best results, use an ACL image
which uses shared libraries.

Load Loom into the Lisp session. A typical way to do this is to load the file load-loom.lisp
from the Loom 3.0 distribution directory. If the Lisp image you loaded in step Ja above includes

Loom, you should omit this step. After loading Loom, you may want to checkpoint this image to
disk for later reuse (e.g., using (excl::dumplisp "my-checkpoint-loom—image")).

In your Lisp session and/or lisp init (typically, ~/.clinit.cl) files, set the following variables,
substituting for ariadne_root the physical pathname specified above for the environment variable
$ARTADNE_ROOT. You may refer to the supplied file $ARIADNE ROOT/config/.clinit.cl for an
example of how these variables might be set.

- 1. (setq excl::*fasl-default-type* ’"sfasl")

. (setq mk::*filename-extensions* ’("lisp" . ‘sfasl"))

iii. (setq user::*ariadne-root-dir* ’"ariadne_root")

1v. (setq mk::*central-registry* ’ ("ariadne_root/sys/defsys/"))
Build the Lisp RISCSIMS system.

(mk: :operate-on-system :riscsims :load :compile-during-load t)

At this point, the session contains a complete but “empty” version of SIMS; you may want to
checkpoint this image to disk for later reuse.

4. Add SIMS GUI [optional]
To add in the Graphical User Interface written in Java:

(a)

(b)
()
(d)

(e)

In a Unix shell, make sure your CLASSPATH environment variable contains both the standard class
location as well as $ARIADNE ROOT/sys/netutils/gui/javagui/java/. Also be sure that the
java and javac executables are in your PATH.

Change to the java directory. cd $ARIADNE ROOT/sys/netutils/gui/javagui/java/.
Execute make to compile the java classes.

Load the GUI driver into the Lisp session.
(mk: :operate-on-system :javagui :load :compile-during-load t)

Finally, you may want to checkpoint this image as well.

5. Add domain model(s) and source specifications(s).

(a)

For example, to add in the example domain, execute:
(mk: :operate-on-system :example :load :compile-during-load t)
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(b) After loading you may want to checkpoint this image as well.

6. Customize and run SIMS
SIMS is now loaded. To begin your session:

(a) Execute (in-package :sims) to select the SIMS package (namespace)

(b) Execute (in-context :example) to select the Example domain context.
At this point, the commands in section 6 should work. In particular, we recornmend executing
the commands in the following order:

(c) Load Lisp init file such as ~/.clinit.cl if this is not autoloaded.

(d) Set necessary SIMS configuration variables such as kqml: : ¥kqml-ans—host* and etc. if they are
not set by the init file.

(¢) You may also set at this time important SIMS customization variables such as
ucpop: : ¥close-broken-sources#*, sims: :#parallel-execution¥,
ucpop: : ¥interleaved-execution#*, and ucpop: :*search-limit*. Also execute one of (sims: :sims-trap-on
or (sims::sims-trap-off) and one of (sims::sims-trace-on) or (sims: :sims-trace—off).
(f) Initialize information sources, using (sims: :initialize-all-sources)or (sims::initialize-source).
(g) Execute (sims::compile-axioms) to build the network of source representations used by the
planner.
(h) If you have loaded the GUI, you may start it by executing (sims: :sims-java-server) followed
a few seconds later by (sims::java-interface).
Examples of how one might carry out steps 6d- 6h can be found in the supplied file
$ARIADNE ROOT/config/sims-init.lisp.
(1) Plan and execute queries.

(j) To exit SIMS including severing any KQML connections, type (sims: :exit).

7. Connect SIMS to a relational DB source using ODBC [Optional]

You may wish to skip this section on first pass. To extend the above with a database source such as
the sample database EXDB included in the release, you will need to continue with the following:

(a) Bring up database
Install the database instance, if necessary, into Oracle or other RDBMS. For more information
about bringing up a new database, please consult your RDBMS documentation.

This example will assume an Oracle DB is being used. Suppose the Oracle SID for this database
is called mydb and it is running on myhost.mycompany.com. Suppose further that the ODBC
libraries are installed in /opt/odbc/odbe3.0/.

(b) Launch KQML ANS

Verify that KQML is installed correctly and that the KQML Agent Name Service (ANS) is running
on some host. Suppose we call this host anshost.mycompany . com.

Briefly, to start an ans on host anshost .mycompany . com:

i. In a shell on anshost.mycompany.com
il. cd $KQML_HOME/bin
iii. source kqmlenv.csh

iv. startans anshost. KQML allows only one ANS per machine. By convention we name the
ANS using the hostname. KQML should respond “Facilitator started.”

v. If it responds otherwise, you will have to kill that process using kill -9 and try again.

vi. To list agents registered with the ANS, do agentls. You should get back a listing such as
anshost (tcp-ip anshost.mycompany.com:5500:) '
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For more information on KQML and the ANS, see the files $KQML_HOME/doc/* . {html,doc,rtf,ps}.

(c) Configure ODBC
In the file which is the value of the environment variable ODBCINI, in the [ODBC Data Sources]
section make an entry for this database of the form:

myhost .mycompany.com:mydb=INTERSOLV Oracle V7 ODBC Driver

and in the Driver Configuration Section make an entry of the form:
[myhost .mycompany. com: mydb]
Driver=/opt/odbc/odbc3.0/1ib/ivor712.s0
Description=INTERSOLV Oracle Version 7 ODBC Driver
ServerName=T:myhost.mycompany.com:mydb

See the supplied file $ARTADNE_ROOT/config/odbe. ini for an example of how the file could be
configured. The convention is that the ODBC aliases have the format
fullinternet_hostname:database_SID. This convention is used by the sql_server and SIMS to effec-
tively communicate password information.
(d) Build and configure the SQL server
i. Change to the sql_server directory:
cd $ARIADNE ROOT/domains/common/sources/common/sql_server
1. Edit the file init.csh in that directory to supply the correct values for the variables
LD.LIBRARY PATH, ODBCHOME, IV_GLS_LCDIR, IV_GLS REGISTRY, INFORMIXDIR,ODBCINI, KQML _HOME,
KQML _ROUTER, KQML_ANS, and ORACLE_HOME.
iii. In the Unix shell, source init.csh. Check that the established environment variable values
make sense.
iv. Edit Makefile in that directory if needed, then use make in that directory. The result should
be an executable called server.
v. Start server with two arguments:
e KQML agent name. By convention, this should be specified as sql_server for myhost mycompany_com.
¢ Password file to consult (see below).
Note that this server will be able to communicate with all database instances running on
myhost.mycompany. com.
vi. Use $KQML HOME/bin/agentls on anshost.mycompany.com to verify that the sql_server
agent just started has registered correctly.
(e) Conﬁgure SIMS to access the new source
. Create or update the source file(s) for the example domain to reflect this newly configured
source. In this case you will want to edit a copy of $ARIADNE_ROOT/domains/ example/~
sources/exdb/definition.lisp, ideally placed into a domain and source subdirectory of
your own creation (see Section 8.1).
1. Create or update a password file which will map from SID/userid pairs to database passwords.
In this file, create an entry of the form:
# Example database
mydb:myhost.mycompany.com:myuserid:mypasswd # SIMS release DB

See the supplied file $ARIADNE ROOT/config/passwd for an example of how this file might
be configured.
1ii. In your Lisp session and/or lisp init (typically, ~/.clinit. cl) file, set the following varlable
to point to the location of the above password file:
A. (setq sims::*password-file* <password_file_location>)
(f) Re-run SIMS
At this point, the command sequence in Step 6 would be a good place to consult again.
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9 Coded Example

This section gives the code that implements the example discussed throughout the manual.

yis
;:; Domain model for the example in the SIMS user manual

139

(in-package :sims)
(in-context :example)

;3 Seaport relations

(def-sims-relation geoloc-code
:domain seaport
:range string)

(def-sims-relation port-name
:domain seaport
:range string)

(def-sims-relation cranes
:domain seaport
:range number)

(def-sims-relation depth
:domain seaport
:range number)

(def-sims-relation tariff-code
:domain european-large-seaport
:range string)

(def-sims-relation seaport-country-code
:domain seaport
:range string)

;33 Seaport concepts

(def-sims-concept american-large-seaport
:is-primitive large-seaport
:annotations ((key (geoloc-code))

(key (port-name))))

(def-sims-concept european-large-seaport
:is-primitive (:and large-seaport
(:the tariff-code string))
:annotations ((key (geoloc-code))
(key (port-name))))

(def-sims-concept large-seaport
:is (:and seaport
(> cranes 7))
:annotations ((key (geoloc-code))
(key (port-name))
(covering (american-large-seaport
european-large-seaport))))

(def-sims-concept small-seaport
:is (:and seaport
(<= cranes 7))
:annotations ((key (geoloc-code))
(key (port-name))))

(def-sims-concept seaport
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tis-primitive (:and sims-domain-concept
(:the country-of country)
(:the geoloc-code string)
(:the seaport-country-code string)
(:the port-name string)
(:the cranes number)
(:the depth number))
:annotations ((key (geoloc-code))
(key (port-name))
(covering (large-seaport small-seaport))))

;33 Country relations

(def-sims-relation country-code
:domain country
:range string)

(def-sims-relation country-name
:domain country
:range string)

(def-sims-relation currency
:domain country
:range number)

(def-sims-relation language
:domain country
:range number)

;33 Country concepts

(def-sims-concept country
tis-primitive (:and sims-domain-concept
(:the country-code string)
(:the country-name string)
(:the language string)
(:the currency string))
:annotations ((key (country-code))))

(def-sims-relation country-of
:domain seaport
‘range country
:is (:satisfies (?s 7c¢)
(:for-some (Zcountry-code)
(:and (seaport 7s)
(country ?c)
(seaport-country-code ?s Tcountry-code)
(country-code 7c Zcountry-code)))))
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R
;;:; Example queries

RN}

(in-package :sims)
(in-context :example)

(setq *queries*
»(;; Large Seaport queries

(11 "What the geoloc codes of all large seaports"
(sims-retrieve (7geoloc-code)

(:and (large-seaport ?1s)

(geoloc-code ?1s ?geoloc-code))))

(12 "How many cranes are available in various large seaports"
(sims-retrieve (7cr)

(:and (large-seaport 7ls)

(cranes 71s 7cr))))

(13 "List the geoloc-codes and number of cranes for all large
seaports"”
(sims-retrieve (?geoloc-code 7cr)
(:and (large-seaport ?1s)
(geoloc-code ?ls ?geoloc-code)
(cranes 71s 7cr))))

(106 “List currency and language for all countries"
(sims-retrieve (7cc 7cn 7currency 7lang)

(:and (country 7?c)

(country-code ?c 7cc)

(country-name ?c ?cn)

(currency ?c Zcurrency)

(language ?c ?lang))))

(107 “List all countries’ currency, language, and seaport information”
(sims-retrieve (Zcc ?cn ?currency ?7lang ?cr 7geoloc-code ?port-name)
(:and (country ?c)
(country~code ?c 7cc)
(country~-name ?c 7cn)
(currency ?c ?currency)
(language 7c ?lang)
(seaport 7s)
(cranes ?s 7cr)
(geoloc~code ?s ?geoloc-code)
(port-name ?s Zport-name)
(country-of ?s 7c))))

)
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;37 Example source model of EXKB1 for SIMS manual

(in-package :sims)
(in-context :example)

;3 Define a new Loom KB data source called EXKB1
(define-source EXKB1 loom-kb-source)
35 Describe the domain in terms of EXKB1

(source-description seaport si EXKB1
(geoloc-code gc)
(port~name pn)
(cranes cr)
(seaport-country-code scc))

(source-description country c1 EXKB1
(country-code cc)
(country-name cn)
(language lang)
(currency curr))

773 Load data (facts) into this new data source
333 Seaport data

(deffact EXKB1 S1 ABIDJAN
(PN “Abidjan")

(GG "AAPV")
(CR 5)
(scc "1v*))

(deffact EXKB1 S1 VLORE
(PF “Vlore")
(GC "YALP")
(Cr 1)
(SCC "AL"))

;33 Country data

(deffact EXKB1 C1 ALBANIA
(cc “AL™)
(CH "ALBANIA")
(LANG "ALBANIAN")
(CURR "LEK"))

(deffact EXKB1 Ci ZIMBABWE
(cc *z1')
(CN "ZIMBABWE")
(LANG “"ENGLISH")
(CURR “DOLLAR"))
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HE
;;; Example source model of EXDB for SIMS manual

R

(in-package :sims)
(in-context :example)

:;; Define a new SQL database, addressed using ODBC alias name,
;;; communication via KQML, called EXDB

(define-source EXDB kqml-odbc-sql-source
:host "isd18.isi.edu"
:agent-name "sql _server"
:db-name “examplei"
:userid "ifd")

;3; Describe the domain in terms of EXDB

(source-description large-seaport 1gsp exdb
(geoloc-code gc)
(depth dp)
(port-name pn)
(cranes cr)
(seaport-country-code scc))

(source-description small-seaport smsp exdb
(geoloc-code gc)
(port-name pn)
(cranes cr)
(seaport-country-code scc))

(source-description european-large-seaport lgeurosp exdb
(geoloc-code gc)
(depth dp)
(port-name pn)
(cranes cr)
(tariff-code tc)
(seaport-country-code scc))

(source-description american-large-seaport lgamersp exdb
(geoloc—code gc)
(depth dp)
(port-name pn)
(cranes cr)
(seaport-country-code scc))

(source-description seaport sp exdb
(geoloc-code gc)
(port-name pn)
(cranes cr)
(seaport-country-code scc))

(source-description country ctry exdb
(country-code cc)
(country-name cn)
(language lang)
(currency curr))

;;;’lo KB facts
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10

Additional Reading

Using this manual and following the instructions in it require familiarity with SIMS, as well as with the
Loom knowledge representation language, and the KQML transport protocol.
The following papers may be consulted for further information about these programs.

10.1 SIMS

1.

10.

11.

12.

13.

14.

Ambite, J.L. and Craig A. Knoblock Reconciling Distributed Information Sources. VI}orking Notes of
the AAAI Spring Symposium on Information Gathering in Distributed Heterogeneous Environments,
Palo Alto, CA, 1995.

Ambite, J.L., Yigal Arens, Naveen Ashish, Chin Y. Chee, Chun-Nan Hsu, Craig A. Knoblock Wei-Min
Shen, and Sheila Tejada. 1995. The SIMS Manual, Version 1.0. ISI/TM-95-428.

Arens, Y., Craig A. Knoblock and Chun-Nan Hsu. Query Processing in the SIMS Information Medi-
ator. Advanced Planning Technology, editor, Austin ‘Tate, AAAI Press, Menlo Park, CA, 1996.

. Arens, Y., Chee, C.Y., Hsu, C-N., and Knoblock, C.A. 1993. Retrieving and Integrating Data from

Multiple Information Sources. In International Journal of Intelligent and Cooperative Information
Systems. Vol. 2, No. 2. Pp. 127-158.

- Arens, Y., Knoblock, C.A., and Shen W-M. Query Reformulation for Dynamic Information Integration,

Journal of Intelligent Information Systems, 6(2/3):99-130, 1996.

Arens, Y. and Knoblock, C.A. 1994. Intelligent Caching: Selecting, Representing, and Reusing Data
in an Information Server. In Proceedings of the Third International Conference on Information and
Knowledge Management (CIKM-94), Gaithersburg, MD.

- Arens, Y., Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock Retrieving and Integrating Data

from Multiple Information Sources. International Journal of Intelligent and Cooperative Information
Systems. Vol. 2, No. 2. Pp. 127-158, 1993.

. Arens, Y. and Knoblock, C.A. 1992. Planning and Reformulating Queries for Semantically-Modeled

Multidatabase Systems, Proceedings of the First International Conference on Information and Knowl-
edge Management (CIKM-92), Baltimore, MD.

. Hsu, C-N., and Knoblock, C.A. 1995. Estimating the Robustness of Discovered Knowledge, in Pro-

ceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95),
Montreal, Quebec, Canada.

Hsu, C-N., and Knoblock, C.A. 1995. Using inductive learning to gen- erate rules for semantic query
optimization. In Gregory Piatetsky-Shapiro and Usama Fayyad, editors, Advances in Knowledge Dis-
covery and Data Mining, chapter 17. MIT Press.

Hsu, C-N., and Knoblock, C.A. 1994. Rule Induction for Semantic Query Optimization, in Proceedings
of the Eleventh International Conference on Machine Learning (ML-95), New Brunswick, NJ.

Hsu, C-N., and Knoblock, C.A. 1993. Reformulating Query Plans For Multidatabase Systems. In Pro-
ceedings of the Second International Conference of Information and Knowledge Management (CIKM-
93), Washington, D.C.

Hsu, C.-N. and Knoblock, C. A. Discovering Robust Knowledge from Dynamic Closed-World Data.
Proceedings of the Thirteenth National Conference on Artificial Intelligence, Portland, Oregon, 1996.

Knoblock, C.A., Arens, Y. and Hsu, C-N. 1994. An Architecture for Information Retrieval Agents. In
Proceedings of the Second International Conference on Cooperative Information Systems, University
of Toronto Publications, Toronto, Ontario, Canada.
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15. Knoblock, C.A. 1995. Planning, Executing, Sensing, and Replanning for Information Gathering. In
IJCAI-95, Montreal, Quebec, Canada.

16. Craig A. Knoblock Applying a General-Purpose Planner to the Problem of Query Access Planning.
Proceedings of the AAAI Fall Symposium on Planning and Learning: On to Real Applications, 1994.

17. Knoblock, C.A. 1994. Generating Parallel Execution Plans with a Partial-Order Planner. Artificial
Intelligence Planning Systems: Proceedings of the Second International Conference (AIPS94), Chicago,
IL.

18. Craig A. Knoblock Building a Planner for Information Gathering: A Report from the Trenches Ar-
tificial Intelligence Planning Systems: Proceedings of the Third International Conference (AIPS96),
Edinburgh, Scotland, 1996.

19. Craig A. Knoblock and Jose Luis Ambite. Agents for Information Gathering Software Agents, J.
Bradshaw ed., AAAI/MIT Press, Menlo Park, CA, 1997.

20. Craig A. Knoblock, Yigal Arens, and Chun-Nan Hsu. Cooperating Agents for Information Retrieval.
Proceedings of the Second International Conference on Cooperative Information Systems, Toronto,
Ontario, Canada, University of Toronto Press, 1994.

These publications, as well as additional information about SIMS, can be accessed through the WWW
at http://www.isi.edu/sims/.

10.2 Loom

1. MacGregor, R. A Deductive Pattern Matcher. In Proceedings of AAAI-88, The National Conference
on Artificial Intelligence. St. Paul, MN, August 1988.

2. MacGregor, R. The Evolving Technology of Classification-Based Knowledge Representation Systems.
In John Sowa (ed.), Principles of Semantic Networks: Ezplorations in the Representation of Knowledge.
Morgan Kaufmann. 1990.

Additional papers and information about Loom can be accessed trough the WWW at the Loom Project

homepage: http://www.isi.edu/isd/LOOM/LOOM-HOME .html .

10.3 KQML

1. Finin, T., Fritzson, R. and McKay, D. A Language and Protocol to Support Intelligent Agent Inter-
operability. In Proceedings of the CE and CALS Washington '992 Conference, June, 1992.

Additional papers and information about KQML can be accessed through the WWW at the KQML
homepage: http://www.cs.umbc.edu/kqml/ .

10.4 CORBA related
1. Iona Technologies. Orbix 2.2: Programming Guide. March 1997.

2. Object Management group. The Common Object Request Broker: architecture and specification.
OMG Document Number 91.12.1, 1991.

3. Ion Muslea. A Guide for Making SIMS a CORBA-compliant Application
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NEW YORK MY 10027

SOFTWARE PRODUCTIVITY CONSDRTIUM
ATTN: MR ROBERT LAI

2214 RDCKX HILL ROAD

HERNDON va 22070

AFIT/ENG

ATTN: DR GARY B. LAMONT

SCHODL OF ENGINEERING

NEPT ELECTRICAL & COMPUTER ENGRG
APAFB 0OH 45433-56583
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NSA/OFC OF RESFARCH

ATTN: MS MARY ANNE COVERMAN

9800 SAVAGE RCAD

FT GEORGE G. MEADE MD 20755-6000

ATET BELL LABDORATORIES

ATTN: MR PETER G. SELFRIDGE
ROCM 30-441

600 MOUNTAIN AVE

MURRAY HILL NJ 07974

ODYSSEY RESEARCH ASSOCIATES, INC.
ATTN: M5 MAUREEN STILLMAN

301A HARRIS B. DATES DRIVE

ITHACA NY 14850-1313

TEXAS INSTRUMENTS INCORPD®ATED
ATTN: DR DPAVID L. WELLS

P.D. 872X 655474, MS 238

DALLAS TX 75255

TEXAS A & M UNIVERSITY

ATTNS DR PAULA MAYER

KNOWLEDGE BASED SYSTEMS LABORATORY
DEPT OF INDUSTRIAL ENGINEERING
COLLEGT STATION TX 77843

KESTREL DEVELOPMENT CORPDRATION
ATTN: D® RICHARD JULLIG

3260 HILLVIEW AVENUE

PALD ALYO LA 34304

DARPAVZITD

ATTN: OR KIRSTIE BELLMAN
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

NASA/Z/JOHNSON 3PACE CENTER
ATTNZ. CHRIS CULRBRERT

MAIL CDDE PT4

HOUSTON TX 77058

SAIC
ATTN: LANCE MILLER
M5 T1-6-3

P0 BOX 1302 (GR 1710 GO30RIDGE DR)
MCLEAN VA 22132
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STERLING IMD INC.

XSC OPERATIONS

ATTN: MARK MAGINN

BEECHES TECHNICAL CAMPUS/RT 26 N.
ROME NY 13440

NAVAL POSTGRADUATE SCHOOL
ATTN: BALA RAMESH

CODE AS/RS

ADMINISTRATIVE SCIENCES DEPT
MONTEREY CA 93943

HUGHES SPACE & COMMUNICATIONS
ATTN: GERRY BARKSDALE

P. 0. BOX 92919

BLDOG R11 M5 M352

L0OS ANGELES, CA 90009-2919

SCHLUMBERGER LABORATORY FOR
COMPUTER SCIENCE

ATTN: DR. GUILLERMO ARANGD

8311 NORTH FM620

AUSTIN, TX 78720

DECISION SYSTEMS DEPARTMENT

ATTN: PROF WALT SCACCHI

SCHOOL OF BUSINESS

UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90089-1421

SOUTHWEST RESZARCH INSTITUTE
ATTN: BRUCE REYNOLDS

6220 CULEBRA ROAD

SAN ANTONIO, TX 78228-0510

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

ATTN: CHRIS DABROWSKI

ROOM A266, BLDG 225

GAITHSBURG MD 20839

EXPERT SYSTEMS LABORATORY
ATTN: STEVEN Heo SCHWARTZ
NYNEX SCIENCE & TECHMOLOGY
500 WESTCHESTER AVENUE
WHITE PLAINS NY 20604

NAVAL TRAINING SYSTEMS CENTER
ATTN: ROBERT BREAUX/CODE 252
12350 RESEARCH PARKWAY
ORLANDD FL 32826-3224
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CENTER FOR EXCELLENCE IN COMPUTER-
AIDED SYSTEMS ENGINEERING

ATTN: PERRY ALEXANDER

2291 IRVING HILL ROAD

LAWRENCE KS 66049

DR JOHN SALASIN
DARPA/ITD

3701 NORYA FAIRFAX DBRIVE
ARLINGTON VA 22203-1714

DR BARRY BOEHM
DIRy, USC CENTER FDR SW ENGINEERING
COMPUTER SCIENCE DEPT
UNIV OF SOUTHERN CALIFORNIA
LOS ANGELES CA $S00B9-0781

DR STEVE (CROSS

CARNEGIE MELLON UNIVERSITY
SCHOOL 0OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

DR MARK MAYBURY

MITRE CORPORATION

ADVANCED INFD SYS TECH; G041
BURLINTYON ROAD, M/S K-329
BEDFCRD MA 01736

ISX

ATTN: MR. SCOTT FOUSE
4353 PARK TERRACE DRIVE
WESTLAKE VILLAGE,CA 91361

MR GARY EDMWARDS

I5X

433 PARK TERRACE DRIVE
WESTLAKE VILLAGE CA 91351

OR ED WALKER

BBN SYSTEMS & TECH CORPORATION
10 MOULTON STREET

CAMBRIDGE MA 02233

LEE ERMAN

CIMFLEX TEKNOWLEDGE
1810 EMBACADERDO ROAD
P.0. BOX 10119

PALO ALTD CA 94303
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DR. DAVE GUNNING
DARPA/ZISG

3701 NORTH FAIRFAX DRIVE
ARLINGYON VA 22203-1714

DAN WELD

UNIVERSITY OF WASHINGTON

DEPART OF COMPUTER SCIENCE & ENGIN
30X 352350

SEATTLE, WA 98195-2350

STEPHEN SODERLAND

UNIVERSITY OF WASHINGTON

DEPT OF COMPUTER SCIENCE & ENGIN
83X 352350

SEATTLE, WA 98195-2350

DR. MICHAEL PITTARELLI

COMPUTER SCIENCE DEPART

SUNY INST OF TECH AT UTICA/ROME
P.0. BOX 3050

UTICA, NY 13504-3050

CAPRARO TECHNMNOLOGIES, INC
ATTN: GERARD CAPRARD

311 TURNER 57.

UTICA, NY 13501

UsSL/IS

ATTN: 808 MCGREGOR

45676 ADMIRALYY WAY
MARINA DEL REY, CA 90292

SRI INTERNATIONAL
ATTN: ENRIQUE RUSPINI
333 RAVENSWOOD AVE
MENLD PARK, CA 94025

DARTMOUTH COLLEGE

ATTN: DANIELA RUS

"DEPT OF COMPUTER SCIENCE
11 ROPT FERRY ROAD
HANOVER, NH 03755-3519

UNIVERSITY OF FLORIDA
ATTN: ERIC HANSON

CISE DEPT 456 (SE
GAINESVILLE, FL 32511-612°0
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CARNEGIE MELLON UNIVERSITY
ATTN: TOM MITCHELL
COMPUTER SCIENCE DEPARTMENT
PITTSBURGH, PA 15213-389)

CARNZGIE MELLON UNIVERSITY
ATTN: MARK CRAVEN

COMPUTER SCIFNCE DEPARTMENT
PITTSBURGH, PA 15213-33890

UNIVERSITY OF ROCHESTER

ATTN: JAMES ALLEN

DEPARTMENT OF COMPUTER SCIENCE
ROCHESTER, NY 14527

TEXTWISEs LLC

ATTNS LIZ LIODY

2-121 CENTER FOR SCIENCE & TECH
SYRACUSE, NY 13244

WRIGHT STATE UNIVERSITY
ATTN: DR. BRUCE BERRA
DEPART OF COMPUTER SCIENCE & ENGIN
DAYTON, DHID 45435-0001

UNIVERSITY OF FLORIDA

ATTN: SHARMA CHAKRAVARTHY
COMPUTER & INFOR SCIENCFT DEPART
GAINESVILLFE, FL 32622-6125

KESTREL INSTITUTE
ATTN: DAVID ESPINGSA
3260 HILLVIEW AVENUE
PALO ALTO, CA 94304

STOLLER-HENKE ASSOCIATES
ATTN: T.J. GOAN
2015 BELLE MONTI AVENUE
BELMONT, CA 940902

USC/INFORMATION SCIENCE INSTITUTE
ATTN: ODORe. CARL KESSELMAN

11474 ADMIRALTY MWAY, SUITE 1001
MARINA DEL REY, CA 90292
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MASSACHUSETTS INSTITUTE OF TECH
ATTN: DR. MICHAELE SIEGEL
SLOAN SCHOOL

77 MASSACHUSETTS AVENUE
CAMBRIDGF, MA 02139

YSC/INFORMATION SCIENCE INSTITUTE
ATTN: DR. WILLIAM SWARTHODUTY
11474 ADMIRALTY WAY, SUITE 1001
MARINA DEL REY, CA 90292

STANFORD UNIVERSITY

ATTN: DR. 6I0 WIEDERHOLD

857 SIERRA STREET

STANFORD

SANTA CLARA COUNTY, CA 354305-4125

NCCOSC RDTE DIV D44208
ATTN: LFEAH WONG

53245 PATTERSON ROAD

SAN DIEGO, CA 92152-T7151

SPAWAR SYSTEM CENTER

ATTN: LES ANDERSON

271 CATALINA 8LYD, CODE 413
SAN DIEGO CA 92151

GEORGE MASON UNIVERSITY
ATTN: SUSHIL JAJODIA
ISSE DEPT

FAIRFAX, VYA 22030-444%

DIRNSA

ATTN: MICHAEL Re. MWARE

DUDy NSAZCSS (RZ3)

FT. GEDRGE G. MEADE MD 20755-6000

DR. JIM RICHARDSON
3660 TECHNOLOGY DRIVE
MINNEAPCLIS, MN 55418

LOUISIANA STATE UNIVERSITY
COMPUTER SCIENCE DEPTY
ATTIN: DR. PETER CHEN

257 CCATES HALL

BATON ROUGE, LA 70803
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INSTITUTE OF TECH DEPT OF COMP SCI
ATTN: ©DR. JAIDEEP SRIVASTAVA
4-192 EE/LCS

200 UNTION ST SE

MINNEAPOLIS, MN 55455

GTE/Z38N

ATTN: MAURICE M. MCNEIL
9655 GRANITE RIDGE DRIVE
SUITE 245

SAN DIEGN, (A 932123

UNIVERSITY OF FLORIDA
ATTN:T DR. SHARMA CHAKRAVARTHY

E470 CSE BUILGING
GAINESVILLE, FL 328611-86125
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MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and
technology for aerospace command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AFRL organization. The directorate’s areas
of investigation include a broad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,
defensive information warfare, and intelligent information systems

technologies.




